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Abstract. A data processing pipeline is described for gaze analytics featuring
velocity-based signal filtering leading to inferential statistics of fixation transi-
tions. The approach is demonstrated on data collected from a virtual environment
study conducted in Unity 3D testing the visibility of a wayfinding aid.
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1 Introduction & Background

Analysis of human spatial cognition when navigating within physical or virtual environ-
ments can be bolstered by collecting eye movements with the help of an eye tracker. In
physical reality, a head-mounted tracker can be worn during navigation with recorded
gaze data often mapped to the screen coordinates of a forward-facing camera. In virtual
reality, gaze data can be recorded with a so-called remote, or table-mounted eye tracker
placed in front of the display screen on which the virtual environment is presented. In
both cases gaze data will eventually need to be processed in order to infer insights about
human visual attention to elements in the environment.

Application of inferential statistics to collected gaze data often relies on character-
ization of the raw data into fixations, usually derived from some form of filtering, e.g.,
dispersion-based or velocity-based. Unfortunately, most commercial software packages
provide only a limited choice of fixation detection algorithms (i.e., filters), often hiding
implementation details or filter parameters from the user. Some systems (e.g., Ogama)
still rely on the dispersion-based “fixation pickers” [7] which have been shown to be
less than reliable, particularly when evaluating data captured on di↵erent platforms, at
di↵erent sampling rates [10]. Velocity-based filters, or “saccade pickers”, while perhaps
more di�cult to tune, o↵er a more reliable alternative. Beyond the lack of su�cient con-
trol over filtering parameters, commercial packages often do not include flexible means
for statistical analysis. This is hardly surprising, however, since eye tracking vendors
can hardly be expected to anticipate all possible experimental designs for which their
devices are used.

In this paper we describe a gaze analytics pipeline through which raw gaze data is
processed. The pipeline consists of the following steps:

1. denoising and filtering raw gaze data gi = (xi, yi, ti), and classifying raw gaze into
fixations fi= (xi, yi, ti, di), where (xi, yi) coordinates indicate the position of the gaze
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(a) No wayfinding aid (b) Wayfinding aid at bottom-right

Fig. 1. Representative screenshots of interactive virtual environment rendered in Unity 3D [2].

point or centroid of the fixation, with ti indicating the timestamp of the gaze point
or fixation and di the fixation’s duration,

2. collating fixation-related information for its subsequent statistical comparison,
3. interpreting and visualizing statistical tests conducted on processed data.

Visualization of the data at each stage of the pipeline is particularly helpful in fine-
tuning parameters, such as threshold levels for velocity-based filtering.

We demonstrate the utility of the analytics pipeline on data collected from a wayfind-
ing study in a virtual environment (see Fig. 1) [2]. Previously, analysis was conducted
only on smoothed gaze data, with comparison of gaze time on, gaze transitions to, and
proportion of gaze time over screen elements. Here, we revisit this data set and feed the
raw data through the analytics pipeline, terminating in entropy transition matrix analysis
of fixations captured on an Area Of Interest (AOI) grid overlaid atop the screen.

2 Fixation Filtering

The eye tracker outputs a stream of gaze points (xi, yi, ti). Typically, this data is noisy
and requires smoothing (see Fig. 2). Treating xi or yi independently, smoothing or dif-
ferentiating (to order s) is achieved by convolving 2p+1 inputs with filter ht,s

i and 2q+1
(previous) outputs ẋi or ẏi with filter gt,s

i at midpoint i [6]:
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and similarly for yi and ẏi, where n and s denote the polynomial fit to the data and its
derivative order, respectively [5,10]. Based on prior work and evaluation of calibration
data, we chose a 4th order Butterworth filter to smooth the raw gaze data with sampling
and cuto↵ frequencies of 60 and 6.15 Hz, respectively [3] (see Fig. 2(b)).

Following Andersson et al. [1] and Nyström and Holmqvist [9], a second-order
Savitzky-Golay (SG) filter [11] is used to di↵erentiate the (smoothed) positional gaze
signal into its velocity estimate. The Savitzky-Golay filter fits a polynomial curve of
order n via least squares minimization prior to calculation of the curve’s sth derivative
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(a) Raw gaze data (b) Smoothed gaze data

Fig. 2. Representative (individual) gaze data smoothing (35,024 points, approx. 20 min time in-
terval). Blue discs indicate positions of 9 calibration points used in the study and the rectangular
grid shows the 4⇥3 rectangular AOIs used in the analysis.

(e.g., 1st derivative (s = 1) for velocity estimation). We use a 6-tap (96 ms) SG filter
with a threshold of ± 20 deg/s to produce fixations (see Fig. 3).

Fine-tuning of the velocity threshold in degrees per second depends on viewing
distance and screen resolution (e.g., in dots per inch). In the exemplar fixations of Fig. 3,
an 1824⇥1026 display (8000 diagonal) was viewed at 7000.

3 Statistical Comparison

Quantitative analysis of filtered fixation data generally depends on application of infer-
ential statistics, e.g., comparison of means via analysis of variance (ANOVA). Typical
eye movement metrics include number of saccades, saccade length and duration, sac-
cadic amplitude, convex hull area, spatial density, number of fixations, fixation dura-
tions, and a fixation/saccade ratio [4]. We extend these analyses by considering entropy
transition matrix analysis of fixations [8].

Assigning a character label to each of the 4⇥3 grid cells leads to a {a, b, c, d} ⌦
{a, b, c} labeling scheme (with cell aa at bottom-left in Fig. 3). Accumulating single
fixation transitions between cells and normalizing to the source leads to a first-order
Markov model of gaze transitions represented by transition matrices visualized in Fig. 4.
The matrix representing the viewing condition with the wayfinding aid (Fig. 4(b)) shows
a higher probability of transitions to the bottom-right cell where the aid was present
(compare columns da in the matrices). A critical question is whether these transitions,
on average, di↵ered significantly under the given experimental conditions.

Considering the set of AOIs as S= {1, . . . , s}, transition matrices a↵ord computation
of Shannon’s entropy Ht = �

P
i2S ⇡i

P
j2S pi j log pi j where pi j denotes the probability

of transitioning from the ith to the jth AOI, which in turn allows statistical compari-
son of matrices. In this particular instance, a Welch two sample t-test shows lack of
significance of fixation transition entropies between the two wayfinding aid conditions
(t=�0.85, p=0.41, n.s.). Lack of significance is likely due to the relatively low number
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(a) Data from session without wayfinding aid
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(b) Data from session with wayfinding aid

Fig. 3. Representative (individual) scanpaths from filtering of smoothed data. The scanpath cap-
tured with no wayfinding aid (1543 fixations) corresponds to the raw and smooth data in Fig. 2.

of participants. Presence of the wayfinding aid resulted in a higher mean transition en-
tropy (M= 0.65, SD= 0.12) than when it was absent (M= 0.62, SD= 0.04), suggesting
that users tended to make (slightly) more transitions with the wayfinding aid present
than without it, e.g., without the aid, viewers tended to transition to the screen center
(grid cells bb and cb, c.f. Figs. 4(a)–4(b) and Fig. 4(c)). Power analysis suggests that
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0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.44 0.11 0.11 0.22 0.00

0.01 0.02 0.00 0.01 0.14 0.00 0.07 0.35 0.00 0.07 0.33 0.00

0.00 0.01 0.00 0.03 0.10 0.00 0.16 0.26 0.01 0.28 0.14 0.00

0.00 0.00 0.00 0.02 0.25 0.02 0.14 0.41 0.04 0.04 0.06 0.02

0.01 0.03 0.00 0.05 0.28 0.00 0.16 0.36 0.01 0.03 0.07 0.00

0.01 0.02 0.00 0.11 0.27 0.00 0.21 0.32 0.00 0.04 0.02 0.00

0.00 0.00 0.08 0.08 0.38 0.00 0.05 0.32 0.00 0.03 0.00 0.05

0.03 0.10 0.00 0.17 0.38 0.00 0.10 0.19 0.00 0.01 0.02 0.00

0.08 0.09 0.00 0.26 0.39 0.00 0.09 0.08 0.00 0.00 0.01 0.00

0.10 0.10 0.15 0.25 0.15 0.10 0.00 0.10 0.00 0.00 0.05 0.00

0.09 0.32 0.00 0.15 0.32 0.00 0.03 0.07 0.00 0.01 0.01 0.00

0.30 0.20 0.00 0.24 0.18 0.00 0.03 0.04 0.00 0.00 0.00 0.00

(a) Transition matrix from ses-
sion without wayfinding aid
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(b) Transition matrix from ses-
sion with wayfinding aid
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(c) Statistical comparison of
transition matrix entropies

Fig. 4. Fixation transition matrices showing empirical probabilities of transitions from source cell
to destination and entropy comparison.
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the e↵ect of the wayfinding aid on gaze transitions may reach significance (p < 0.05)
with about 400 participants (per between-subjects group).

4 Discussion & Conclusions

A data pipeline was described for processing raw gaze data through filtering and velocity-
based fixation classification followed by collation of fixations into transitions for entropy-
based statistical comparison.

With gaze data recorded in individual XML files, the entire processing pipeline,
complete with data visualizations, is readily implemented in Python and R, the free
software environment for statistical computing.
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