
Modeling Skill Combination Patterns for Deeper
Knowledge Tracing

Yun Huang
Intelligent Systems Program

University of Pittsburgh
Pittsburgh, PA, USA
yuh43@pitt.edu

Julio D. Guerra-Hollstein
School of Information

Sciences
University of Pittsburgh

Pittsburgh, PA, USA
Instituto de Informática,

Universidad Austral de Chile
Valdivia, Chile

jdg60@pitt.edu

Peter Brusilovsky
School of Information
Sciences & Intelligent

Systems Program
University of Pittsburgh

Pittsburgh, PA, USA
peterb@pitt.edu

ABSTRACT
This paper explores the problem of modeling student knowl-
edge in complex learning activities where multiple skills are
required at the same time, such as in the programming do-
main. In such cases, it is not clear how the evidence of
student performance translates to individual skills. As a
result, traditional approaches to knowledge modeling, such
as Knowledge Tracing (KT), which traces students’ knowl-
edge of each decomposed individual skill, might fall short.
We argue that skill combinations might carry extra specific
knowledge, and mastery should be asserted only when a
student can fluently apply skills in combination with other
skills in different contexts. We propose a data-driven frame-
work to model skill combination patterns for tracing stu-
dents’ deeper knowledge. We automatically identify signifi-
cant skill combinations from data and construct a conjunc-
tive knowledge model with a hierarchical skill representa-
tion based on a Bayesian Network. We also propose a novel
evaluation framework primarily focuses on the knowledge
inference quality, since we argue that traditional prediction
metrics no longer suffice to differentiate between shallow and
deep knowledge modeling. Our experiments on datasets col-
lected from two programming learning systems show that
proposed model significantly increases mastery inference ac-
curacy and tends to more reasonably distribute students’
efforts comparing with traditional KT models and its non-
hierarchical counterparts. Our work serves as a first step
towards building skill application context sensitive model
for modeling students’ deep, robust learning.

Keywords
complex skill, multiple skill, composition effect, Knowledge
Tracing, Bayesian Network, robust learning, deep learning

1. INTRODUCTION
Knowledge Tracing (KT) [6] established itself as an effi-

cient approach to model student skill acquisition in intelli-
gent tutoring systems. The essence of this approach is to de-
compose domain knowledge into elementary skills and map
student problem-solving performance into student knowl-
edge level for each of the skills. Knowledge Tracing demon-
strated its ability to track student knowledge for different
domains and could be now considered as the most popular

learner modeling approach. However, a known limitation of
Knowledge Tracing is the assumption of skill independence
in problems that involve multiple (complex) skills. Recent
research, however, challenged this assumption demonstrat-
ing that there is additional knowledge related to specific skill
combinations, in other words, the knowledge about a set of
skills is more than the “sum” of the knowledge of individual
skills [13], some skill must be integrated (or connected) with
other skills to produce behavior [20]. For example, students
were found significantly worse at translating two-step alge-
bra story problems into expressions (e.g., 800-40x) than they
were at translating two closely matched one-step problems
(with answers 800-y and 40x) [13].

This points out that at least in some domains, we need to
pay specific attention to modeling student knowledge con-
sidering skill combinations. One of these domains is ar-
guably computer programming. Research on computer sci-
ence education and pedagogy has long argued that knowl-
edge of a programming language can’t be reduced to a sum
of knowledge about different programming constructs since
there are many stable combinations or patterns (also known
as schemas, plans) that have to be taught and practiced [8,
27]. To generalize to other domains, we argue that skill com-
bination patterns can also potentially represent “chunks”,
production rules, or general problem solving patterns that
are critical for defining expertise in a domain.

In this paper we use datasets from SQL and Java program-
ming tutors to demonstrate the feasibility and the value of
modeling skill combination patterns. We present a data-
driven framework for modeling skill combinations including
a novel student model and new evaluation metrics.

2. BACKGROUND

2.1 Patterns in Programming Expertise
Experts in the area of psychology of programming have

long argued that programming plans and other kinds of pat-
terns form an important part of programming expertise [8].
Most actively, all kinds of programming patterns: plans,
techniques, templates, and“cliches”were used by researchers
in the are of intelligent tutoring systems (ITS) for program-
ming to support intelligent analysis of student programs [18,
31]. While intelligent debuggers recognized and diagnosed
pattern errors, they do not maintain a model of student

knowledge on pattern level. First student models on the
level of patterns were introduced by Brusilovsky [1] who used
expert-suggested construct pairs as knowledge components
for problem sequencing and Weber [30] who applied larger
programming ”episodes” as knowledge components for adap-
tive recommendation of program examples [31]. The more
advanced episodic model has never been expanded or ported
to another languages due to its complexity and high knowl-
edge engineering demands. In contrast, the simper pair-
based approach has been used in a few follow-up projects
[23]. The work presented in this paper continues this stream
of research focusing on lower-level skill combinations and
their automatic (rather than manual) discovery.

2.2 Complex Skill Student Modeling and its
Evaluation

Complex skill student knowledge modeling has been a
challenge and attracts increasing attention in student model-
ing community. Starting from Gong [9] constructing variants
based on traditional Knowledge Tracing using multiplication
or minimization among skills, more advanced models have
been put forward to address the multiple skill credit and
blame assignment issue [22, 32, 11, 33], and many of them
resemble cognitive diagnosis models such as DINA or NIDA
[19]. However, these student models only use a “flat” knowl-
edge structure which might overlook the actual important
dependency or interaction among skills. Among the works
that consider hierarchies or relations among skills, most of
them focus on prerequisite relations [5, 2] or granularity hi-
erarchy [25, 12], which differ from skill combination relation
in nature and cannot be readily applied. Also, most of these
works rely heavily on expert laboring, and automatic meth-
ods to discover skill relations is still a recent endeavor [4].

Regarding the data-driven evaluations of complex skill
student models, prior works mostly uses prediction perfor-
mance [32, 11, 33]. There is a growing concern of only using
prediction performance for evaluating student models. [10]
have shown that highly predictive model may be useless for
adaptive tutoring, and they can have low parameter plausi-
bility or consistency [17]. While some attempts have been
made to evaluate in terms of the effect for tutoring [22], a re-
cent learner outcome-effort paradigm [10] offers a promising
way to empirically evaluate student models for adaptive tu-
toring. In this work, we extend both of our previous frame-
works [10, 17] for evaluating complex skill student models.

3. PROPOSED FRAMEWORK
This section introduces our framework of incorporating

skill combination patterns for deeper knowledge tracing. It
consists of model construction and model evaluation.

3.1 Model Construction
We construct a Bayesian Network (BN), Conjunctive Knowl-

edge Modeling with Hierarchical Skill Combination (CKM-
HSC), to model skill combinations. Figure 1 shows the struc-
ture of our model. It supports three functionalities: 1) per-
formance prediction, 2) knowledge estimation, and 3) mas-
tery decision. The O nodes (shaded) represent observed bi-
nary student performance, K nodes represent binary latent
skill knowledge level, and M nodes represent the aggregated
binary latent skill knowledge level that we call Mastery. Par-
ticularly, we introduce Mastery nodes, in order to reflect the
idea of granting skill mastery for each skill based on all the

skill combinations’ knowledge levels. Edges denote causal
relation among the variables. One major challenge of ap-
plying BN for complex skill modeling is the time and space
complexity. We made simplifications in the model to balance
complexity and accuracy, which we further explain.

Figure 1: Bayesian Network Structure of Conjunctive
Knowledge Modeling with Hierarchical Skill Combinations

3.1.1 Skill Combination Pattern Representation
We represent skill combination patterns in a hierarchical

way in the Knowledge and Mastery parts (see Figure 1):

I The first layer consists of basic individual skills. It cap-
tures the basic understanding and application of a skill.
For example, in Java, we can have K1 representing the
basic understanding and application for ForStatement,
and similarly, K2 for ArrayElement.

II The intermediate layers consist of skill combinations
which can be derived from smaller skill units. These lay-
ers capture a deeper understanding of each individual
skill considering when and how to apply it with other
skills in more complex situations. For example, K1,2

can represent the joint skill of ForStatement and Ar-
rayElement requiring iteratating through an array. As
a first step to simplify the problem, we only consider
skill combinations from two basic individual skills.

III The last layer represents the Mastery in each of the in-
dividual skills, where the nodes are fed from skill com-
binations or single skills. We introduce this layer in
order to reflect the idea of granting skill mastery for
each skill based on all the skill combinations’ knowl-
edge levels. To avoid repeated computation, combined
skills only connect to one Mastery node, the one rep-
resenting the later basic skill in the temporal order in
which the skills appear in the course.

Knowing skills from lower layers serves as prerequisites for
knowing skills in higher layers. We argue that such a de-
pendency (hierarchy) is crucial. For example, for an item
requiring skill combinations, if a student fails, the model
can differentiate whether the problem is in the basic skill or
due to a lack of experience of applying skills together; if a
student succeeds, the model can increase the belief that the
student already knows the basic individual skill through the
prerequisite link.

To model the relation between basic individual skills and
combined skills, we use multinomial distributions, since dif-
ferent basic individual skills might have different importance
in affecting the knowledge of combined skills. However,
this can impose exponential complexity. In this framework
we limit skill combinations to be composed from an upper
bound of N lower level skill units, typically choosing N as a

small number. In the case where high order combinations are
involved, we can consider using causal independence models
to reduce to linear complexity.

3.1.2 Learning Network Structure and Parameters
Since the network involves latent variables, we use Expec-

tation Maximization algorithm to conduct network learning.
The final structure of the network depends on which skill
combinations are incorporated. If we don’t limit the search
space of skill combinations, it will scale exponentially. So
we employ some heuristics to select skill combinations. Al-
gorithm 1 outlines a greedy search algorithm. It requires
a pre-ordering of the skill combination candidates. Dur-
ing each iteration, it compares the cost functions (e.g., data
log likelihood) of the network with a skill combination in-
corporated with the optimal one from previous iterations.
However, in each iteration, the posteriors of latent variables
have to be computed which can be very time-consuming.

Algorithm 1 Learn CKM-HSC

Input: potential skill combination list C, original item to
individual skill adjacency matrix Q (qmatrix), initial
skill to skill adjacency matrix H (all zero), student per-
formance data matrix O, initial parameters Θ

Output: new Bayesian Network B with final structure, fit-
ted parameters, and posteriors of latent skills

1: B = ConstructBN(Q,H,Θ)
2: B, Cost = LearnBN(B,O)
3: C′ = SelectAndRankSkillCombinations(C,O)
4: for each skill combination pattern c ∈ C′ do
5: Q′ = UpdateQmatrix(Q, c)
6: H ′ = UpdateHmatrix(H, c)
7: B′ = UpdateBN(B,Q′, H ′)
8: B′, Cost′ = LearnBN(B′, O)
9: if Cost′ < Cost then

10: B = B′

11: Cost = Cost′

12: end if
13: end for
14: return B

To increase the run time efficiency, we construct a sim-
plified version replacing the search procedural with empiri-
cal thresholding (pruning), as shown in Algorithm 2 which
we use in the current work. Preliminary analysis with a
subset of the data (Java dataset with 158 students on 45
items) showed that we can achieve comparable results with
the simplified version of the algorithm and reduce compu-
tation time significantly (from 9 hour to 30 minutes to fin-
ish structure and parameter learning) based on the popular
Bayes Net Toolbox [24]. We leave for the future to explore
faster implementation tools and alternative techniques (e.g.,
approximate inference) to address this issue.

Now we introduce how we select skill combinations and
thus learn the BN structure in Algorithm 2. Firstly, we
get all the possible pairwise combinations of skills by each
pair’s co-occurrence in each item, which results in a big list of
skill combination patterns. Then, we apply following criteria
(with higher importance criterion ordered before) through
the algorithm to select the skill combinations (note that in
order to get ranked skill combinations for an item (Line 14:
function GetRankedSkillCombinationsForItem), we also use
criterion I-II).

Algorithm 2 Learn CKM-HSC (simplified)

Input: C, Q, H, O, Θ (same as in Algorithm 1); item to
possible skill combination matrix P , thresholds α1:4

Output: new Bayesian Network B with final structure, fit-
ted parameters, and posteriors of latent skills

1: C′=[]
2: for each skill combination pattern c ∈ C do
3: βc = EstimateDifficulty(c, P,O)
4: S = GetIndividualSkills(c)
5: βS = EstimateDifficulties(S,Q,O)
6: if (βc - Max(βS)) > α1 and βc > α2 then
7: C′ = Add(C′, c)
8: end if
9: end for

10: M = GetItemList(Q)
11: for each item m ∈M do
12: βm = EstimateDifficulty(m,O)
13: if βm > α3 then
14: Cm = GetRankedSkillCombinationsForItem(m,P,O)
15: C′m = []
16: for each combined skill c ∈ Cm do
17: if c ∈ C′ and Length(C′m) ≤ α4 then
18: C′m = Add(C′m, c)
19: else
20: break
21: end if
22: end for
23: Q′ = UpdateQmatrix(Q,m,C′m); Q = Q′

24: H ′ = UpdateHmatrix(H,C′m); H = H ′

25: end if
26: end for
27: B′ = ConstructBN(Q′, H ′,Θ)
28: B′ = LearnBN(B′, O)
29: B = B′

30: return B

I The difference of difficulties between the combined skill
and its hardest individual skill should be large and non-
zero (Line 6: βc - Max(βS)). Otherwise, the original
individual skills should be able to capture the difficulty
of an item already and extra skill is not needed.

II The difficulty of the combined skill should be high (Line
6: βc > α2).

III An item with higher difficulty is more needed to be
refined, in this case, to be indexed with combined skills
(Line 13: βm > α3).

IV Each item is indexed with a limited number of skill
combinations (Line 17: Length(C′m) ≤ α4). Our pre-
liminary study shows that the number of skill combi-
nation candidates increases quickly even with a small
relaxation of this criterion.

In order to estimate difficulty of skills or items (Algo-
rithm 2 the function EstimateDifficulty or EstimateDiffi-
culties), one possible way is to apply some existed mod-
els such as Item Response Theory [29] or Additive Factors
Model [3] to extract related parameters. However, any such
pre-estimations can’t avoid imposing assumptions of learn-
ing or skill relations. For example, IRT assumes no learn-
ing while our datasets are collected from learning activities;
AFM assumes compensatory relation among skills while on
our datasets a conjunctive relation is more suitable. We use
a simple heuristic method which also imposes assumptions

but we argue it should be no worse than the above alter-
natives given its simplicity of computation. We estimate
item m’s difficulty βm by computing the average error rate
across students on this item. For estimating skill s’s diffi-
culty βs, we apply a Min gate (get the minimum value) to
the difficulty estimations (βm) of all items (M) containing
this skill, assuming each skill’s basic difficulty level is de-
termined by the easiest item in which the skill is required,
i.e., βs= Min

s∈m,1≤m≤M
(1− βm). We use this formula for both

estimating an individual skill’s difficulty and a skill combi-
nation’s difficulty.

Learning BN with hierarchical structures among latent
skills based on temporal learning data is non-trivial. To sim-
plify the modeling process, we ignore the temporal learning
effect during the model learning process1, while maintaining
the dynamic knowledge estimation power during the appli-
cation phase (see 3.1.3). Such simplifications have been used
in many prior works [5, 28], and we argue that it can be rea-
sonably compensated by the dynamic updating process (see
subsection 3.1.3). We leave for future work to include the
temporal learning effect in our model.

3.1.3 Dynamic Knowledge Update
At each practice opportunity, the learned network pro-

vides the inference of a latent knowledge node. For each
student’s first practice, the network uses the same priors for
latent knowledge nodes to perform inference, and only when
we update the knowledge by different students’ performance,
the network starts to differentiate among students by main-
taining different up-to-date knowledge estimates. In order
to achieve this, CKM-HSC follows the same dynamic BN
roll-up mechanism in [5]: it uses posterior knowledge prob-
abilities conditioned on historical observations as the priors
for next time step. Note that we only need to update the
basic individual skills in the first layer. The states of other
skill variables will be computed based on fitted conditional
probabilities. The following formulas outline the update of
the knowledge state of a basic individual skill i at time step
t after observing an evidence:

P(Kt+1
i =known)prior = P(Kt

i=known)posterior (1)

= P(Kt
i=known|Ot=evidence) (2)

This updating procedure differs from KT [6]: it ignores the
transition probabilities between time steps. However, simi-
lar to [5], we argue that the change in knowledge estimates
is mainly determined by the new evidence. We leave for the
future incorporating learning parameters.

3.1.4 Performance Prediction
CKM-HSC applies a Noisy-AND gate for each item’s con-

ditional probability distribution, assuming that students need
to know all the underlying skills in order to succeed given
our datasets’ nature on which only one answer is accepted.
Noisy-AND gate and other causal independence models has
been used in many prior works [5], particularly in the pop-
ular psychometric model DINA [19]. The major benefit is
that it only requires two parameters (guess and slip) for each
item, regardless of the number of skills required by the item.

1Correspondingly, we compress the data for training by us-
ing average success rate across attempts as the performance
of a student on an item with discretization (assign 1 if suc-
cess rate ≥ 0.5 and 0 otherwise)

This significantly reduces the complexity of the model. Note
that for items having skill combinations, the probability of
getting this item correct only depends on the combined skills
and is independent of the basic individual skills. Equations
3 and 4 show the CPT of item i consisting of its guess and
slip probabilities gi and si:

P(O=correct|all skills=known) = 1− si (3)

P(O=correct|at least one skills=unknown) = gi (4)

3.1.5 Mastery Decision
To access the mastery level of each skill, CKM-HSC ag-

gregates knowledge estimates from each skill combination
assigned to current skill (if no skill combinations are present,
then the basic skill), and gives a final knowledge level of a
skill, based on which, skill mastery is decided. It means that
to reach mastery, students need to know both, skill’s basic
meaning and how to correctly apply it with other skills. We
aggregate by computing the joint probability of all required
skill units being in known state as the probability of a mas-
tery node as shown in Equation 5. Since skill combinations
share parents, computing this joint probability considers the
dependencies among skills:

P(Mi=known)=P(Ki,1=known,... Ki,j=known) (5)

where Ki,1 to Ki,j denotes the skill combinations assigned
to Mi. If a skill has no assigned skill combination, then

P (Mi = known) = P (Ki = known). (6)

3.2 Model Evaluation
We argue that modeling “deeper” knowledge of complex

skills requires also “deeper” evaluation, and only examining
prediction performance is not enough, as explained in Sec-
tion 2.2. We propose a new evaluation framework extend-
ing a recent Learner Effort-Outcome Paradigm (LEOPARD)
[10], and a multifaceted evaluation framework [17]. We think
that in a real world tutoring system relying on a student
model’s knowledge inference to provide support, knowledge
inference quality should be of primary importance, and also
parameter plausibility shouldn’t be overlooked.

Mastery Accuracy (knowledge inference quality).
The basic idea is that once a student model asserts a stu-
dent’s mastery for an item’s required skills, the student
should be very unlikely to fail. In the original metric, each
single skill’s knowledge state is examined and accuracy is
computed on data after reaching mastery threshold. This
is not applicable to multiple skill case since the responsibil-
ity of each skill for the actual performance is not clear. To
address this, we examine the multiple skill knowledge states
jointly as shown in Algorithm 3.

Mastery Effort (knowledge inference quality). This
metric empirically quantifies the number of practices stu-
dents needed to reach a level of mastery of the set of skills in
a domain inferred by a student model. It is computed based
on each individual skill’s expected effort as shown in Algo-
rithm 4 (which is similar to the original metric in [10]). To
apply LEOPARD to multiple skill models, we make a sim-
plification: each practice count can be treated as a count
for each individual skill involved. We argue that it won’t
change the relative effort comparing among models because
all models will be computed under the same simplification.
In a preliminary study on our data set, we find out that only

one out of 20 students has reached mastery for all attempted
skills. This suggests that computing effort based on per skill
perspective is better since it allows to have sufficient data.
We leave for the future to further improve this metric.

Algorithm 3 Get mastery accuracy (multiple skill)

Input: vector Y of actual correctness performance (ordered
by time step within each student), matrix K of a student
model’s inferred knowledge levels (probability of known)
for required skills per observation (with the same order
as Y), item to skill matrix Q, mastery threshold p

Output: mastery accuracy metric
1: NbObsWithSkillsInferredMastery = 0
2: NbObsCorrectAndSkillsInferredMastery= 0
3: for each observation yt ∈ Y do
4: st = GetRequiredAggregatedIndividualSkills(yt, Q)
5: kt = GetInferredKnowledge(t, st, K)
6: AllSkillsInferredMastery= TRUE
7: for each skill’s inferred knowledge kq,t ∈ kt do
8: . Judge whether current required skill is inferred

mastery; if any one skill is not inferred mastery,
change the flag and stop checking:

9: if kq,t < p then
10: AllSkillsInferredMastery = FALSE; break
11: end if
12: end for
13: if AllSkillsInferredMastery then
14: NbObsWithSkillsInferredMastery += 1
15: end if
16: if yt==1 then
17: NbObsCorrectAndSkillsInferredMastery += 1
18: end if
19: end for
20: if NbObsWithSkillsInferredMastery>0 then
21: . Check among observations with required skills all

inferred mastery, how many of them are with actual
correct responses:

22: MasteryAccuracy = NbObsCorrectAndSkillsInferredMastery
NbObsWithSkillsInferredMastery

23: else
24: return “No sufficient data.”
25: end if
26: return MasteryAccuracy

Two important considerations for computing the metrics
described above are explained as follows.
• The balance between Mastery Accuracy and Effort. As

our later experiments shown, it seems that a model
can achieve higher mastery accuracy by letting stu-
dents practice for longer time. However, we argue
that having an acceptable level of Mastery Accuracy
(e.g.,> 0.85) is necessary for a real world tutoring sys-
tem, and thus it is needed and worthy that more prac-
tice effort is required before reaching this level of ac-
curacy. Otherwise, the system will risk granting mas-
tery in few practices when students haven’t reached it,
which we think is more problematic than delaying the
granting of mastery.
• Mastery Threshold. Different mastery thresholds have

been used in prior works [6, 10]. Typically 0.95 is
used, yet the rationality behind it is also not clear. We
present evaluations on an extensive range of mastery
thresholds [0.5, 0.99], but primarily focus on higher
threshold regions (e.g., ≥ 0.7).

• Amount of data to compute mastery metrics. As shown
in Algorithm 3 and 4, to compute mastery accuracy or
effort, we need to have data with corresponding knowl-
edge states inferred as mastery state by student mod-
els.When mastery is not reached (by inference), LEOP-
ARD uses imputation, which we think is not suitable
on thresholds with few students inferred to reach mas-
tery. This might distort the original distribution. So,
We remove imputation, and only focus on thresholds
with sufficient data with at least 25% of the complete
data available to compute the mastery metrics.

Algorithm 4 Get mastery effort (multiple skill)

Input: K, Q, p (same as in Algorithm 3)
Output: mastery effort metric
1: MasteryEffort=0
2: for each skill q in the complete skill list do
3: MasteryEffortPerStuq=[]
4: for each student u attempted items requiring q do
5: MasteryEffortu,q = 0
6: . Select inferred skill q’s knowledge level sequence

corresponding to student u’s response sequence:
7: ku,q = Filter(K)
8: for each practice t ∈[0, Length(ku,q)] do
9: . Judging whether at the current practice a stu-

dent is inferred reaching mastery of a skill :
10: if ku,q,t < p then
11: . If a student isn’t inferred reaching mastery of

a skill, keep counting :
12: MasteryEffortu,q += 1
13: else
14: . Otherwise, stop counting:
15: break
16: end if
17: end for
18: MasteryEffortPerStuq =
19: Add(MasteryEffortPerStuq, MasteryEffortu,q)
20: end for
21: . Compute on average how many practices are re-

quired to reach mastery for skill q:
22: MasteryEffortq = Average(MasteryEffortPerStuq)
23: . Accumulating number of practices to get the total

number of practices to reach mastery of all skills for
a student on average:

24: MasteryEffort += MasteryEffortq
25: end for
26: return MasteryEffort

IDI (parameter plausibility). To examine parameter
plausibility, we utilize the Item Discriminative Index (IDI)
used in psychometric models for evaluating item qualities
and refining q-matrix [7]:

IDIi = 1− gi − si (7)

where gi and si denotes item i’s guess and slip probabilities.
A higher IDI is preferable which have both low guessing and
slipping rates. We utilize this metric to evaluate models
with item level guess and slip probabilities.

RMSE, AUC (performance prediction accuracy).
We report two popular prediction metrics used in evaluating
student models, Root mean squared error (RMSE) and Area
Under the Receiver Operating Characteristic curve (AUC)
based on a recent paper [26]’s suggestion.

Table 1: Dataset descriptive statistics.

Dataset #obs. #items #skills avg #skills/item #users %correct
SQL 17,197 45 34 5 (from 1 to 10) 366 58%
Java 25,988 45 56 5 (from 1 to 11) 347 67%

4. STUDIES
In this section we describe studies that demonstrate CKM-

HSC’s advantage over traditional and alternative models,
give a closer examination of extracted skill combinations,
and briefly explore the effect of adding external knowledge.

4.1 Datasets and Experimental Setup
We used two datasets, SQL and Java programming, col-

lected through classroom studies between Fall 2013 and Fall
2015 at the University of Pittsburgh. The SQL dataset is
from an online system SQL-KNOT, and the Java dataset is
from the system JavaGuide [15]. Both systems contain prob-
lems requiring students to apply multiple skills at the same
time, and they allow students to have multiple attempts
where each attempt corresponds to a new instantiation of the
same template. In SQL-KNOT, students are asked to write
complete SQL statements to solve problems, and only one
solution is accepted; in JavaGuide, students are requested
to predict output of different Java programs and only one
answer is accepted. Both systems assess correctness (0/1).
Problems are grouped by topics and indexed by a set of fine-
grained concepts by experts assisted with ontologies and an
automatic Java parser [14]. For computational efficiency, on
Java dataset, we remove two most complex topics (Interface
and Inheritance), and randomly selected 45 items. Table
1 shows the descriptive statistics of the final datasets used
(with multiple attempts).

One both datasets we conducted a 10-fold student strat-
ified cross-validation. In each fold we trained on 90% of
students , and predicted the probability of getting a prob-
lem correct and inferred the probability of knowing a skill
for each observation of the remaining 10% of new students.
On each fold, we evaluate each model from following multi-
faceted metrics introduced in Section 3.2:

• Knowledge inference quality: Mastery Accuracy,
Mastery Effort.
• Parameter plausibility: IDI
• Performance prediction accuracy: RMSE, AUC

For each metric, we compute the average value across 10
folds and 95% confidence interval based on t-distribution.
Note that during predicting on test set, we perform dy-
namic update: each model gradually gather information of
the new students. We used Bayes Net Toolkit (BNT) [24]
to construct all the models. We initialize each models’ skill
parameters by setting them as the estimated difficulties in-
troduced in Section 3.1.2. We initialize the learn rate for
KT based models as 0.15, and initialize all models’ guess
and slip as 0.3. We set convergence criterion as 10−4 and
maximum EM iteration as 500. For applying Algorithm 2,
we set α1 as the 75th percentile’s value of the positive range
of the difference (βc-Max(βS)) computed on all skill combi-
nations based on the performance data (ordered from small
to large), and similarly, we set α2, α3 as the 75th percentile
of βc and βm values computed from the data. We set α4=2.
These values of α are set based on our preliminary studies
consulting experts. On average (across 10 folds), our auto-
matic method extracts 14 and 30 skill combinations on SQL
and Java datasets.

Table 2: Comparison among CKM-HSC, CKM and tradi-
tional KT models (average across 10 folds with 95% CI).

Datasets SQL Java
Models IDI RMSE AUC IDI RMSE AUC
KT-Single / .46(.01) .70(.01) / .44(.01) .69(.01)
WKT / .47(.00) .69(.01) / .44(.00) .72(.01)
CKM .33(.01) .47(.01) .70(.01) .39(.01) .45(.01) .73(.01)
CKM-HSC .35(.01) .47(.01) .70(.01) .46(.01) .45(.01) .73(.01)

4.2 Is proposed skill combination incorporated
model better than traditional KT models?

In the first study, we compare following models:

• KT-Single: Each item is mapped to one coarse-grained
skill (topic). This is an implementation of the classic
Knowledge Tracing [6] which uses a Hidden Markov
Model for each skill to model the latent knowledge and
predict the performance of students. The hidden vari-
able represents knowledge level (learned or unlearned)
and the observable represents performance (correct or
incorrect). There are four parameters for each skill:
the probability of a student initially learned a skill be-
fore practicing, the probability of a student transition-
ing from unlearned to learned state, the probability
of a student guessing correctly given the student is in
unlearned state and the probability of a student slip-
ping given the student is in learned state. We fit and
predict each skill independently.

• WKT: Each item is mapped to a set of skills (con-
cepts). We fit each skill independently as classic Knowl-
edge Tracing [6], and then take the minimum of each
skill’s predicted probability of success as the final pre-
diction. We only update the knowledge of this weakest
skill when the evidence is an incorrect response, while
we update all skills when the evidence is a correct re-
sponse. This is a model used in many prior works [9].

• CKM: Our proposed conjunctive knowledge modeling
without incorporating skill combinations. It fits, pre-
dicts and updates skills jointly by Bayesian Network.

• CKM-HSC: Our proposed model. Each item is mapped
to a set of skills, which can be either individual skill or
skill combination with hierarchy among them. It fits,
predicts and updates skills jointly using a BN.

On both datasets, CKM-HSC has comparable predictive
performance as other models (Table 2). However, CKM-
HSC has significantly better mastery accuracy than other
models (on thresholds with enough data points to compute
mastery metrics and high enough values to be considered as
proper mastery thresholds), and it also estimates that more
effort is needed to reach mastery (Figure 2). As mentioned
in Section 3.2, we think that having such more practices
in CKM-HSC is necessary in order to reach an acceptable
mastery accuracy.

We are still interested in comparing how CKM-HSC and
WKT distribute students’ effort, so we further conduct a
drill-down effort analysis on SQL dataset (Figure 3). For
skills that potentially have skill combinations, WKT in-
differently updates the skill whether an item requires skill
combinations or not, and blindly distributes students’ effort
among different application context, risking students with
shallow learning reaching mastery, and also it directs stu-
dents to spend more effort on skills without combinations.
CKM-HSC clearly distributes students’ efforts as follows: it

0.5 0.6 0.7 0.8 0.9 1.0
Mastery Threshold

0.60

0.65

0.70

0.75

0.80

0.85
M

a
st

e
ry

 A
cc

u
ra

cy
average across thresholds [0.70,0.81]:

KT-Single=0.70, WKT=0.72, CKM=0.69, CKM-HSC=0.76

KT-Single

WKT

CKM

CKM-HSC

(a) Sql

0.5 0.6 0.7 0.8 0.9 1.0
Mastery Threshold

0

50

100

150

200

250

300

M
a
st

e
ry

 E
ff

o
rt

average across thresholds [0.70,0.81]:
KT-Single=41, WKT=112, CKM=34, CKM-HSC=126

KT-Single

WKT

CKM

CKM-HSC

0.5 0.6 0.7 0.8 0.9 1.0
Mastery Threshold

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
a
st

e
ry

 A
cc

u
ra

cy

average across thresholds [0.70,0.93]:
KT-Single=0.70, WKT=0.80, CKM=0.78, CKM-HSC=0.84

KT-Single

WKT

CKM

CKM-HSC

(b) Java

0.5 0.6 0.7 0.8 0.9 1.0
Mastery Threshold

0

50

100

150

200

250
M

a
st

e
ry

 E
ff

o
rt

average across thresholds [0.70,0.93]:
KT-Single=10, WKT=53, CKM=30, CKM-HSC=83

KT-Single

WKT

CKM

CKM-HSC

Figure 2: Comparison among CKM-HSC, CKM and tradi-
tional KT models. Grey lines denote regions with enough
data points to compute mastery metrics and high enough
values to be considered as proper mastery thresholds.

tends to make students spend little effort (≤ 10) on the basic
individual skill, spend less effort on skills without skill com-
binations, and spend much more effort on mastering skill
combinations by its estimation.

Does the improvement in mastery accuracy of CKM-HSC
mainly come from the Bayesian Network responsibility as-
signment mechanism rather than incorporating skill combi-
nations? Comparing the simple CKM with KT-Single and
WKT, we can see there is no clear advantage of simple CKM,
which is not the case for CKM-HSC. So the advantage starts
to appear after we incorporate skill combinations. We also
can see CKM-HSC has better IDI than CKM (Table 2).

Will the difference in mastery accuracy and effort just
an artifact of setting different mastery thresholds? No. For
example, on SQL dataset, for reaching similar mastery accu-
racy by selecting different thresholds, WKT usually tend to
require much more effort to reach mastery than CKM-HSC.
Similar phenomenon can be observed on Java dataset.

An interesting observation is that on Java dataset, al-
though KT-Single has quite comparable RMSE with other
models, it shows very low mastery accuracy and asserts very
low mastery effort. This further shows the problem of using
predictive performance to evaluate student models.

0.5 0.6 0.7 0.8 0.9 1.0
Mastery Threshold

0

20

40

60

80

100

120

140

160

M
a
st

e
ry

 E
ff

o
rt

average across thresholds [0.70,0.81]:
WKT=42, CDM-HSC Basic=4, CDM-HSC Basic+Comb.=96

WKT

CDM-HSC Basic

CDM-HSC Basic+Comb.

(a) Skills requiring knowing com-
bined skills

0.5 0.6 0.7 0.8 0.9 1.0
Mastery Threshold

0

50

100

150

M
a
st

e
ry

 E
ff

o
rt

average across thresholds [0.70,0.81]:
WKT=70, CKM-HSC=30

WKT

CKM-HSC

(b) Skills not requiring knowing
combined skills

Figure 3: A drill down-comparison CKM-HSC vs. WKT on
mastery effort on SQL dataset.

4.3 Is using hierarchy better than independence
for incorporating skill combinations?

In this study, we investigate the effect of using hierarchy
for incorporating skill combinations. We compare following
three models:

• WKT-SC: Using WKT’s framework, adding skill com-
binations as new independent individual skills.

• CKM-SC: Using proposed model’s framework, adding
skill combinations as new independent individual skills.

• CKM-HSC: Our proposed model, adding skill com-
binations in a hierarchical way.

0.5 0.6 0.7 0.8 0.9 1.0
Mastery Threshold

0.60

0.65

0.70

0.75

0.80

0.85

0.90

M
a
st

e
ry

 A
cc

u
ra

cy

average across thresholds [0.70,0.81]:
WKT-SC=0.73, CKM-SC=0.71, CKM-HSC=0.76

WKT-SC

CKM-SC

CKM-HSC

0.5 0.6 0.7 0.8 0.9 1.0
Mastery Threshold

0

50

100

150

200

250

300

M
a
st

e
ry

 E
ff

o
rt

average across thresholds [0.70,0.81]:
WKT-SC=142, CKM-SC=89, CKM-HSC=126

WKT-SC

CKM-SC

CKM-HSC

0.5 0.6 0.7 0.8 0.9 1.0
Mastery Threshold

0

20

40

60

80

100

120

140

160

M
a
st

e
ry

 E
ff

o
rt

average across thresholds [0.70,0.81]:
WKT-SC_B=27, CKM-HSC_B=4, WKT-SC_C=44, CKM-HSC_B+C=96

WKT-SC Basic

CKM-HSC Basic

WKT-SC Comb.

CKM-HSC Basic+Comb.

(a) Skills requiring knowing com-
bined skills

0.5 0.6 0.7 0.8 0.9 1.0
Mastery Threshold

0

20

40

60

80

100

120

140

160

M
a
st

e
ry

 E
ff

o
rt

average across thresholds [0.70,0.81]:
WKT-SC=71, CKM-HSC=30

WKT-SC

CKM-HSC

(b) Skills not requiring knowing
combined skills

Figure 4: CKM-HSC vs. alternatives to incorporate skill
combinations on SQL. Grey lines denote regions with enough
data points to compute mastery metrics and high enough
values to be considered as proper mastery thresholds.

We mainly report results on SQL dataset. Three mod-
els have similar predictive performance (RMSE=0.47±0.01,
and AUC=0.7±0.01). However, comparing other metrics,
we see important difference among the models (Figure 4) .
Comparing WKT-SC with CKM-HSC, the latter has bet-
ter mastery accuracy and similar effort on higher mastery
thresholds.

A drill-down analysis (Figure 4) shows that WKT-SC
tends to require students to spend much more effort on basic
individual skills’ understanding for skills with combinations
and also tends to require more mastery effort on skills with-
out combinations; while CKM-HSC tends to require stu-
dents to put major effort in skill combinations. Compar-
ing CKM-HSC with CKM-SC, we can see that including
hierarchy significantly improves mastery accuracy and re-
quires more mastery effort, and slightly improves parameter
plausibility from an IDI value of 0.34±0.01 to a value of
0.35±0.01. Similarly, we observe that the different behav-
iors among three models are not simply the effect of setting
different mastery thresholds.

On Java dataset, we reach similar conclusion: all mod-
els have similar predictive performance, but CKM-HSC im-
proves mastery accuracy and requires similar mastery effort,
and it also has higher IDI than CKM-SC.

Table 3: Comparison among CKM-HSC and alternatives
adding external knowledge on Java (average across 10 folds
with 95% CI; mastery metrics computed on [0.7, 0.93]).

Models M.Acc M.Effort IDI RMSE AUC
CKM-HSC .84 83 .46(.01) .45(.01) .73(.01)
CKM-HSC-P .82 70 .45(.01) .45(.01) .73 (.01)
CKM-HSC-P-E .82 59 .42(.01) .45(.01) .73 (.01)

4.4 Can we improve modeling by adding ex-
ternal knowledge for skill combination ex-
traction?

Our impression from manual inspection of the automat-
ically extracted skill combinations from data was mostly
positive. For example, on Java dataset, many extracted
skill combinations contain Loop related concepts (such as
ForStatement) combined with IfStatement, AddAssignment-
Expression, or Array related concepts. However, we also
observed extracted pairs which are not apparently mean-
ingful. For example, java.lang.String.substring combined
with java.lang.System.out.print . We conduct further analy-
sis to investigate whether using external information to in-
crease skill combinations’ interpretability can improve stu-
dent modeling. We compare three models on the Java dataset:

• CKM-HSC: Our proposed model only using perfor-
mance data to extract skill combinations. This results
in 41 skill combinations from 10 folds.
• CKM-HSC-Proximity: Extracted pairs are further

constrained by proximity, i.e we only consider pairs
appearing in the same line or in the same block (for
example a skill inside a for-loop and the for-loop are in
the same block). This results in 31 skill combinations.
• CKM-HSC-Proximity-Expert: Experts mark ped-

agogically meaningful pairs from the skill pairs ex-
tracted by CKM-HSC-Proximity. This results in 19
skill combinations.

We summarize the results in Table 3. Interestingly, adding
extra knowledge sacrifices mastery accuracy slightly, and
also decrease models’ parameter plausibility, but it saves
much more effort. This shows that purely data-driven ap-
proach, despite some human interpretability issues, may cap-
ture some latent, implicit relationship among skills to enable
it has the highest mastery accuracy and parameter plau-
sibility, but it may require much more mastery effort. A
promising direction is to find a balance between data-driven
approach and human interpretability.

5. CONCLUSIONS
In this paper, we examined the importance of skill combi-

nations in domains of multiple-skill problems where multiple
skills can be integrated (combined) together to require extra
knowledge or produce extra difficulty not captured by con-
tributing individual skills. Our work is the first attempt to
model this skill combination effect using data-driven tech-
niques. We constructed a Conjunctive Knowledge Model
with Hierarchical Skill Combinations (CKM-HSC) based on
Bayesian Networks. In our new model, mastery of a skill
can only be granted when a student demonstrates ability
to apply this skill with other skills in varied contexts. We
demonstrated that incorporating skill combinations can sig-
nificantly increase mastery assertion accuracy and more rea-
sonably direct students’ practice effort comparing with tra-
ditional knowledge tracing models and its non hierarchi-
cal counterpart. We propose an evaluation framework for

student models built for multiple skill knowledge modeling.
Under our new evaluation framework, we effectively quan-
tify the accuracy and expected mastery effort of a student
model’s knowledge inference, which can not be addressed by
traditional performance prediction metrics.

We also addressed the problem of computational complex-
ity by using suitable network representation and heuristic
data-driven methods. In the future, we will explore more
efficient implementation tool and new techniques.

We are aware that it is very challenging to learn the struc-
ture of a complex hierarchical, multi-layer Bayesian Net-
work, so we will consider collecting larger datasets, and
datasets with more sparse connections among nodes. We
will also consider consulting experts for determining (refin-
ing) the structures of the network, and giving structure pri-
ors of the network.

Our current study only considers skill combination in pairs,
and it will be to interesting to consider more complex skill
combinations, and even consider difficulty factors from cog-
nitive task analysis [21]. In the longer term, we expect that
such a framework can be extended to model skill application
context, “chunks”, schemas or patterns for defining expertise
or deep learning of a domain [16].

We expect that our new skill combination model can pro-
vide more significant benefits when deployed in real-world
tutoring systems. It can potentially enable more powerful
visualization for open student models and better remedia-
tion. It can encourage students to practice in more contexts
on the way to mastery, and guide content authors in devel-
oping content that addresses skill combinations. Not only
serving as an attempt to bridge data mining with pedagog-
ical and learning theory, our work also raises attention in
the community to build student models for deeper, robust
student learning.

Acknowledgement
This research is supported by the Advanced Distributed
Learning Initiative (http://www.adlnet.gov/) and the Na-
tional Science Foundation Cyber-Human Systems (CHS) Pro-
gram under Grant IIS-1525186.

6. REFERENCES
[1] P. Brusilovsky. Intelligent tutor, environment and

manual for introductory programming. Educational
and Training Technology International, 29(1):26–34,
1992.

[2] C. Carmona, E. Millán, J.-L. Pérez-de-la Cruz,
M. Trella, and R. Conejo. Introducing prerequisite
relations in a multi-layered bayesian student model. In
User Modeling 2005, pages 347–356. Springer, 2005.

[3] H. Cen, K. Koedinger, and B. Junker. Learning
factors analysis: A general method for cognitive model
evaluation and improvement. In M. Ikeda, K. Ashley,
and T.-W. Chan, editors, Intelligent Tutoring Systems,
volume 4053 of Lecture Notes in Computer Science,
pages 164–175. Springer Berlin / Heidelberg, 2006.

[4] Y. Chen, P.-H. Wuillemin, and J.-M. Labat.
Discovering prerequisite structure of skills through
probabilistic association rules mining. In The 8th
International Conference on Educational Data Mining,
pages 117–124, 2015.

[5] C. Conati, A. Gertner, and K. Vanlehn. Using
bayesian networks to manage uncertainty in student
modeling. User Modeling and User-Adapted
Interaction, 12(4):371–417, 2002.

[6] A. Corbett and J. Anderson. Knowledge tracing:
Modeling the acquisition of procedural knowledge.
User Modeling and User-Adapted Interaction,
4(4):253–278, 1995.

[7] J. De La Torre. An empirically based method of
q-matrix validation for the dina model: Development
and applications. Journal of educational measurement,
45(4):343–362, 2008.

[8] D. J. Gilmore and T. R. G. Green. Programming
plans and programming expertise. The Quarterly
Journal of Experimental Psychology Section A,
40(3):423–442, Aug. 1988.

[9] Y. Gong, J. E. Beck, and N. T. Heffernan. Comparing
knowledge tracing and performance factor analysis by
using multiple model fitting procedures. In Intelligent
Tutoring Systems, pages 35–44. Springer, 2010.

[10] J. P. González-Brenes and Y. Huang. Your model is
predictive – but is it useful? theoretical and empirical
considerations of a new paradigm for adaptive
tutoring evaluation. In Proc. 8th Intl. Conf.
Educational Data Mining, pages 187–194, 2015.

[11] J. P. González-Brenes, Y. Huang, and P. Brusilovsky.
General features in knowledge tracing: Applications to
multiple subskills, temporal item response theory, and
expert knowledge. In Proc. 7th Int. Conf. Educational
Data Mining, pages 84–91, 2014.

[12] J. E. Greer and G. I. McCalla. A computational
framework for granularity and its application to
educational diagnosis. In IJCAI, pages 477–482, 1989.

[13] N. T. Heffernan and K. R. Koedinger. The
composition effect in symbolizing: The role of symbol
production vs. text comprehension. In the Nineteenth
Annual Conference of the Cognitive Science Society.
Lawrence Erlbaum Associates.

[14] R. Hosseini and P. Brusilovsky. Javaparser: A
fine-grained concept indexing tool for java problems.
In AIEDCS workshop, 2013.

[15] I.-H. Hsiao, S. Sosnovsky, and P. Brusilovsky. Guiding
students to the right questions: adaptive navigation
support in an e-learning system for java programming.
Journal of Computer Assisted Learning,
26(4):270–283, 2010.

[16] Y. Huang. Deeper knowledge tracing by modeling skill
application context for better personalized learning. In
The 24nd Conference on User Modeling, Adaptation
and Personalization Doctoral Consortium, 2016.

[17] Y. Huang, J. P. González-Brenes, R. Kumar, and
P. Brusilovsky. A framework for multifaceted
evaluation of student models. In Proc. 8th Int. Conf.
Educational Data Mining, pages 203–210, 2015.

[18] W. L. Johnson and E. Soloway. Proust:
Knowledge-based program understanding. IEEE
Transactions on Software Engineering, 11(3):267–275,
1985.

[19] B. W. Junker and K. Sijtsma. Cognitive assessment
models with few assumptions, and connections with
nonparametric item response theory. Applied
Psychological Measurement, 25(3):258–272, 2001.

[20] K. R. Koedinger, A. T. Corbett, and C. Perfetti. The
knowledge-learning-instruction framework: Bridging
the science-practice chasm to enhance robust student
learning. Cognitive science, 36(5):757–798, 2012.

[21] K. R. Koedinger, E. A. McLaughlin, and J. C.
Stamper. Automated student model improvement.
Proc. 8th Intl. Conf. on Educational Data Mining,
pages 17–24, 2012.

[22] K. R. Koedinger, P. I. Pavlik Jr, J. C. Stamper,
T. Nixon, and S. Ritter. Avoiding problem selection
thrashing with conjunctive knowledge tracing. In
EDM, pages 91–100, 2011.

[23] A. N. Kumar. A scalable solution for adaptive
problem sequencing and its evaluation. In 4th
International Conference on Adaptive Hypermedia and
Adaptive Web-Based Systems (AH’2006), pages
161–171. Springer Verlag.

[24] K. Murphy et al. The bayes net toolbox for mabtlab.
Computing science and statistics, 33(2):1024–1034,
2001.

[25] Z. A. Pardos, N. T. Heffernan, B. Anderson, and C. L.
Heffernan. The effect of model granularity on student
performance prediction using bayesian networks. In
User modeling 2007, pages 435–439. Springer, 2007.

[26] R. Pelanek. Metrics for evaluation of student models.
Journal of Educational Data Mining, 7(2):1–19, 2015.

[27] E. Soloway and K. Ehrlich. Empirical studies of
programming knowledge. IEEE Trans. Software
Engineering, SE-10(5):595–609, 1984.

[28] N. Thai-Nghe, L. Drumond, A. Krohn-Grimberghe,
and L. Schmidt-Thieme. Recommender system for
predicting student performance. Procedia Computer
Science, 1(2):2811–2819, 2010.

[29] W. J. van der Linden and R. K. Hambleton. Handbook
of modern item response theory. Springer Science &
Business Media, 2013.

[30] G. Weber. Episodic learner modeling. Cognitive
Science, 20(2):195–236, 1996.

[31] G. Weber. Individual selection of examples in an
intelligent learning environment. Journal of Artificial
Intelligence in Education, 7(1):3–31, 1996.

[32] Y. Xu and J. Mostow. Comparison of methods to
trace multiple subskills: Is LR-DBN best? In Proc.
5th Intl. Conf. Educational Data Mining, pages 41–48,
Chania, Greece, 2012.

[33] Y. Xu and J. Mostow. A unified 5-dimensional
framework for student models. In Workshop on
Approaching Twenty Years of Knowledge Tracing at
the 7th Intl. Conf. on Educational Data Mining, pages
122–129. Citeseer, 2014.

