
Extending the SHOIQ(D) Tableaux with
DL-safe Rules: First Results

Vladimir Kolovski and Bijan Parsia and Evren Sirin
University of Maryland
College Park, MD 20740
kolovski@cs.umd.edu

bparsia@isr.umd.edu

evren@cs.umd.edu

Abstract

On the Semantic Web, there has been increasing demand for a rules-
like expressivity that goes beyond OWL-DL. Efforts of combining rules
languages and description logics usually produce undecidable formalisms,
unless constrained in a specific way. We look at one of the most expressive
- but decidable - such formalisms proposed: DL-safe rules, and present
a tableaux-based algorithm for query answering in OWL-DL augmented
with a DL-safe rules component. In this paper we present our algorithm
which is an extension of the SHOIQ tableaux algorithm and show the
preliminary empirical results. Knowing that we pay a high price in per-
formance for this expressivity, we also explore possible optimizations.

1 Introduction

Even though OWL-DL [3] has been a great success as a language for ontology
representation on the Semantic Web, there is already demand for even greater
expressivity in the form of logic programming (LP) rules. Community interest
in this area is growing, as evidenced by the recent (November 2005) creation
of the Rule Interchange Format Working Group (RIF [2]). One approach to
provide the needed additional expressivity is to couple in some way Description
Logic with LP rule systems (the hybrid approach).

However, combining expressive Description Logics with rules is non-trivial
since it can easily lead to undecidability if the integration is not restricted in some
manner. There have been a number of proposals that follow the hybrid approach



while still retaining decidability [12, 4, 9]. The logic of DL-safe rules [12] is one
of the most expressive of these, combining SHIQ(D) and positive datalog rules.
DL-safe rules allow classes and properties from the Description Logic component
to occur freely in the head or the body of the rule, with the only restriction being
that they can be applied only to explicitly named individuals. The same authors
who coined the term also proposed the only practical reasoning algorithm for
this formalism [11]. The algorithm is based on reducing the description logic
knowledge base to a positive disjunctive datalog program, appending the DL-
safe rules to this program and using optimized deductive database techniques
for query answering.

As an alternative to a reduction to disjunctive datalog, in this paper we
present a direct tableaux algorithm for DL-safe rules, as an extension to the
SHOIQ tableaux algorithm. Instead of converting the Description Logic knowl-
edge base to a datalog program, we extend a highly optimized OWL-DL tableaux
reasoner to handle these rules. We believe that we will benefit from layering our
algorithm on top of an efficient tableaux reasoner and our initial empirical re-
sults support this claim. Also, this approach allows our algorithm to cover the
full expressivity of OWL-DL (SHOIN (D)) and DL-safe rules.

In the following section, we provide preliminaries and definitions of terms
used later in this paper. Then, after presenting our algorithm, we discuss its
performance in the preliminary tests, and possible optimizations and future
work.

2 Background

In this section we provide a brief overview of the terms and notation used later in
the paper. We assume that the reader is familiar with the syntax and semantics
of SHOIN (D). Before introducing DL-safe rules, we need to describe the
standard notation we will be using for rules. A term is either a constant (denoted
by a, b, c) or a variable (denoted by x, y, z ). An atom has the form P (s1, ..., sn),
where P is a predicate symbol and si are terms. A literal is an atom or a negated
atom. A rule has the form

H ← B1, . . . , Bn

where H and Bi are atoms; H is called the rule head, and the set of all Bi is
called the rule body. A program P is a finite set of rules. As for the semantics,
we treat rules as logical implications, thus they can also be represented as:

H ∨ ¬B1 ∨ ¬B2 ∨ . . .¬Bn

Definition 1 (Semantics of a DL-safe Knowledge Base)



We start with a SHOIN (D) knowledge base, K. Let VC, VIP , VDP be count-
able and pair-wise disjoint sets of class, object property and datatype property
names respectively. Let VP be a set of predicate symbols that can be used as atoms
in the rules, such that VC ∪VIP ∪VDP ⊆ VP . A DL-atom is an atom of the form
A(s) were A belongs to VC, or of the form R(s, t) where R belongs to VIP ∪VDP .
A rule r is called DL-safe if each variable in r occurs in a non-DL-atom in the
rule body. A program is DL-safe iff all of its rules are DL-safe.

Let K be a SHOIN (D) knowledge base and P a set of DL-safe rules. A
DL-safe Knowledge Base is a pair (K, P ). Since SHOIN (D) is a subset
of first order logic, we can give the semantics of (K, P ) by π(K)∪P where π(K)
is a translation mapping SHOIN (D) to first order logic.

3 Tableaux Algorithm

In this section we present a tableaux-based algorithm for deciding the satisfia-
bility of DL-safe knowledge bases. Our algorithm is inspired by the decidability
proof for query answering in combined SHOIN (D) and DL-safe rules [12]. The
main difference is that we push the rule reasoning inside the tableaux algorithm
in order to get some goal directed behavior. Our approach extends the SHOIQ
algorithm [7] thus we are able to handle the full expressivity of OWL-DL and
DL-safe rules. We assume that the reader is familiar with the basics of the
SHOIQ algorithm (detailed description is available in [7]).

The main reasoning service that our algorithm provides is query answering.
More specifically, answering for a given query α and a DL-safe knowledge base
KB = (K, P ) whether KB |= α. This can be reduced to a consistency check of
KB ∪ {¬α} , so KB |= α iff KB ∪ {¬α} is not consistent.

To check whether a DL-safe KB (K, P ) is consistent, we need to perform
a consistency check of its ABox with respect to the TBox, the RBox and the
rules. Since it was shown in [7] that we can reduce reasoning w.r.t. general
TBoxes and role hierarchies to reasoning w.r.t. role hierarchies only, from now
on without loss of generality we will assume that we have internalized the TBox
and we do reasoning w.r.t. to the RBox and the rules program.

Since ABoxes in general involve multiple individuals with arbitrary role rela-
tionships between them, the completion algorithm will work on a forest instead
of a tree. Such a forest is a collection of trees whose root nodes correspond to
the individuals present in the input ABox. The individuals in the input ABox
are the explicitly asserted individuals, and are the only individuals to which the
rules in P are applicable. A formal description of a completion forest is given
in the following definition.

Definition 2 (SHOIQ + DL-safe Completion Forest) (extended version of [8])
A completion forest F for a SHOIQ Abox A w.r.t a role hierarchy R and a



DL-safe KB (K, P ) is a collection of trees whose distinguished root nodes may be
connected by edges in an arbitrary way. The completion forest can be described
as a directed graph G = (V ,L, E , P, 6=) where each individual x ∈ V can be labeled
with a set of concept labels L(x) and each edge (x, y) can be labeled with a set of
role names E(x, y). P is a program consisting of DL-safe rules Ri ,each one of
the form

Hi ∨ ¬Bi1 ∨ ¬Bi2 ∨ . . .¬Bin

We also keep track of inequalities between nodes of the graph with a symmetric
binary relation 6= between the nodes of G. Given a SHOIQ Abox A, a role
hierarchy R and a DL-safe program P , the algorithm initializes a completion
forest F that contains a root node xi

0 for each individual ai ∈ A, and an edge
(xi

0, x
j
0) if A contains an assertion (ai, aj) : R for a role R. The labels of these

nodes and edges are initialized as follows:

L(xi
0) = {C|ai : C ∈ A}

L((xi
0, x

j
0)) = {R|(ai, aj) : R ∈ A}

xi
0 6= xj

0 iff ai 6= aj ∈ A

For the purpose of our paper, we assume standard blocking and clash defini-
tions [7].

The tableaux algorithm starts with the completion forest F . It applies the
completion rules and stops when a clash occurs. The ABox A is consistent
w.r.t. to R and P iff the completion rules can be applied in a way that they yield
a complete and clash-free completion forest, and inconsistent otherwise.

Our extension of the algorithm is in the form of a new completion rule,
R-rule 1. We reuse all of the original SHOIQ completion rules, and add the R-
rule. The R-rule starts with generating all of the possible ground instantiations
for a DL-safe rule (we will refer to them as bindings henceforth). We need to
be careful with the bindings because only named individuals not introduced
by the tableaux expansion rules are considered. For every such binding, we
check whether at least one of the ground literals holds true. If that is not the
case, we have found a clash and the DL-safe knowledge base is inconsistent.
Thus, for every literal in the rule we create a disjunction branch, in which we
assert that the literal holds (in a manner explained in Figure 1 ) - this branch
is then explored further. This is the most naive version of the algorithm, and
optimizations are discussed in the next sections.

Please note here that for brevity, we do not include all of the SHOIQ
tableaux completion rules (they are defined in [7]). We only present our new
expansion rule which is to be applied with lowest priority.

1Thanks to the anonymous reviewer for the suggestion



→ R rule:
foreach DNF clause Ri ∈ P :

foreach ground substitution to Ri that produces a ground clause G :

foreach monadic ground literal B(a) ∈ G :
if B /∈ L(a), then create a new branch where L(a) = L(a) ∪ {B}

foreach dyadic ground literal B(a, b) ∈ G :
if B is of type ¬A(a, b) and ∀A.¬{b} /∈ L(a), then

create a new branch where L(a) = L(a) ∪ {∀A.¬{b}}

if B is of type A(a, b) and (a, b) /∈ G then
create a new branch with G = G∪ {(a, b)} and L(a, b) = {A}

if B is of type A(a, b), (a, b) ∈ G and A /∈ L(a, b) then
create a new branch where L(a, b) = L(a, b) ∪ {A}

Figure 1: New Expansion Rule

4 Implementation and Optimizations

We implemented a proof of concept by extending the open source reasoner Pel-
let [1]. Obviously, the bottleneck of the algorithm is the non-determinism in-
troduced by creating and exploring tableaux branches for every binding. Thus,
as an easy optimization, we check whether, for a particular binding, the rule
ground clause is trivially satisfied (one of the disjuncts occurs in the tableaux).
If this is the case, we do not generate any new branches for that clause in the
tableaux.

More advanced, yet practical, optimizations are possible. For example, we
do not need to generate all possible groundings of the rules. Thus, we use a
fix-point evaluation procedure as an optimization for our algorithm. By running
that procedure first, we make sure that all of the obvious rules are fired - by
obvious we mean those rules whose patterns we can match syntactically against
the individuals in the completion forest. We use the efficent pattern matching
RETE [5] algorithm for this purpose. After the fixpoint is reached, we continue
with our tableaux-based algorithm. The speed up comes from the fact that for a
given grounding for a rule, if the rule was already fired in the pattern-matching
phase, now we do not have to try each disjunct of its horn clause separately,
thus decreasing non-determinism.

Another optimization would be to sort the rules after the fix point optimiza-
tion and before running our algorithm. For a given rule r:

H ← B1, . . . , Bn

we would like to try those groundings that satisfy the maximum amount of



conditions Bi first. By doing this we will succeed in firing the ’almost obvious’
applications of the rules first, and add more information in the concept labels
of the tableaux. In general, the more information we have in the concept labels,
the higher the chances to reach a clash when grounding the horn clauses of the
rules, yielding less non-determinism in the algorithm.

5 Evaluation

We conducted an experimental study to compare the performance of our ap-
proach with KAON2 [10]. Our test case of choice was a modified version of the
LUBM benchmark [6], with one university and increasing ABox sizes. There are
46 defined classes and 30 object properties in the ontologies. We extended this
ontology by adding a rules component consisting of 2 rules:

GraduateStudent(X):-
Person(X), takesCourse(X, Y ), GraduateCourse(Y ).

SpecialCourse(Z):-
FullProfessor(X), headOf(X, Y ), teacherOf(X, Z).

We ran the experiments on an IBM ThinkPad T42 with Pentium Centrino
1.6GHz processor and 1.5GB of memory. The performance results (time in
milliseconds) for the consistency check of the ontologies are shown in table 1.
Rule Branch stands for the number of additional branches introduced by the
R-rule.

No Size of ontology Pellet DL-Safe KAON2
Rule Branches Consistency Check Time Consistency Check Time

1 LUBM, 1 rule, consistent, 17 individuals 34 100 661
2 LUBM, 1 rule, consistent, 94 individuals 107 250 621
3 LUBM, 1 rule, inconsistent, 94 individuals 120 381 651
4 LUBM, 2 rules, consistent, 17 individuals 109 421 701
5 LUBM, 2 rules, inconsistent, 94 individuals 422 951 691
6 LUBM, 2 rules, inconsistent, 94 individuals 0 90 691
7 LUBM, 2 rules, consistent, 94 individuals 422 1232 5748

Table 1: Evaluation Results for Consistency Checking. Rule Branches stands
for the total number of branches introduced by the R-rule

Please note that the first rule has 2 variables, and the second has 3. The
additional variable in the second rule impacts the performance, since there are
considerably more bindings possible for that rule. As an example of the expo-
nential blow up of the bindings, consider that in the case of LUBM with two
rules and 94 individuals, in the naive implementation there were 804264 bind-
ings to try. This observation lead us to another optimization strategy - prune



the bindings search space. To accomplish this, we embed the trivial satisfiability
check in the generation of the bindings. This strategy, along with the imple-
mentation of the RETE algorithm as a preprocessor, improved the performance
considerably.

We present our results compared to KAON2 in Table 1. As it can be seen,
for smaller cases we perform favorably, however the faster rate of increase of
consistency check time on our part suggests that for larger ontologies we will be
slower than KAON2. The last two test cases merit more discussion. In case of
6), after the RETE algorithm fired the obvious rules we got a clash early and
avoided generation of groundings. In the lasr test case, we added another class ,
OverachievingProfessor which is equivalent to a FullProfessor who teaches
at least 9 courses. This was to demonstrate how we perform better in presence
of cardinality constraints.

6 Related Work

The most relevant related work to ours is the only other practical reasoning
algorithm that processes DL-Safe KBs . The algorithm is described in [11]
(implemented in [10]) and is based on the SHIQ(D) logic and having restricted
the DL-atoms in rules to concepts and simple roles. The algorithm is based on
reducing the description logic knowledge base to a positive disjunctive datalog
program which entails the same set of ground facts as the original knowledge
base. As shown in Section 5, our algorithm compares reasonably well for smaller
ontologies and for cases when cardinality constraints are used.

7 Conclusions and Future Work

This paper makes the following contributions:

• Provides a direct tableaux procedure for the combination of OWL-DL and
DL-safe rules.

• Provides preliminary empirical results of an implementation and discussion
of possible optimizations.

As for our next steps, we noticed that a the reordering of the literals in the
rule makes a noticeable difference in the running time, so we will try to work
out the optimum orderings. Also, in longer term, we plan to work on evolving
our algorithm toward SWRL by integrating a first order Free Variable tableaux
procedure with the SHOIQ algorithm.



References

[1] Pellet - OWL DL Reasoner. http://www.mindswap.org/2003/pellet.

[2] Rule interchange format working group, 2005.
http://www.w3.org/2005/rules/wg.

[3] M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein. Web Ontology Lan-
guage (OWL) Reference Version 1.0. W3C Working Draft 12 November
2002 http://www.w3.org/TR/2002/WD-owl-ref-20021112/.

[4] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Al-log: integrating
datalog and description logics. Journal of Intelligent Information Systems,
10:227–252, 1998.

[5] C. Forgy. Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence, 19:17–37, 1982.

[6] J. Heflin, Z. Pan, and Y. Guo. The lehigh university benchmark LUBM.
http://swat.cse.lehigh.edu/projects/lubm/, 2003.

[7] I. Horrocks and U. Sattler. A tableaux decision procedure for shoiq. In
Proc. of IJCAI 2005, pages 448 – 453.

[8] I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the
description logic shiq. In D. MacAllester, editor, Proc. of the CADE 2000,
number 1831, pages 482–496. Springer-Verlag, 2000.

[9] A. Levy and M.-C. Rousset. CARIN: A representation language combining
horn rules and description logics. Artificial Intelligence, 104(1-2):165–209,
1998.

[10] B. Motik. KAON2 - ontology management for the semantic web.
http://kaon2.semanticweb.org/, 2005.

[11] B. Motik. Reasoning in Description Logics using Resolution and Deductive
Databases. PhD thesis, Univesitt Karlsruhe, Germany, January 2006.

[12] B. Motik, U. Sattler, and R. Studer. Query answering for owl-dl with rules.
In Proc. of ISWC 2004, pages 549–563.


