
Model checking the basic modalities of CTL with Description
Logic

Shoham Ben-David Richard Trefler Grant Weddell

David R. Cheriton School of Computer Science
University of Waterloo

Abstract. Model checking is a fully automated technique for determining whether the behav-
iour of a finite-state reactive system satisfies a temporal logic specification. Despite the fact that
model checking may require analyzing the entire reachable state space of a protocol under analy-
sis, model checkers are routinely used in the computer industry. To allow for the analysis of large
systems, different approaches to model checking have been developed, each approach allowing for
a different class of systems to be analyzed. For instance, some model checkers represent program
state spaces and transitions explicitly, others express these concepts implicitly. The determination
of which flavour best suits a particular model must often be left to experimentation. Description
Logic (DL) reasoners are capable of performing subsumption checks on large terminologies. In
this paper, we show how to perform explicit state model checking with a DL reasoner. We formu-
late the check that a reactive system satisfies a temporal specification as a consistency check on a
terminology in the DLALC and demonstrate our method on an example.

1 Introduction

Model checking [4] (cf. [5]) is a fully automated technique for verifying that the behaviour of
a finite-state reactive system satisfies a temporal logic specification. As such, it is extremely
useful in verifying important aspects of safety critical reactive systems.

The main challenge in this area, known as thestate explosion problem, arises because
systems may have short textual descriptions encoding exponentially larger state spaces that are
analyzed by the model checker. While model checking techniques are widely used in industry
[1, 6, 11], methods of attacking the state explosion problem and increasing the applicability
of this technique are of substantial interest.

Given a finite state modelM (a non-deterministic Kripke structure), a model checker
verifies that the behaviours ofM satisfy a temporal logic specificationϕ, typically given in
Computation Tree Logic (CTL) [4], i.e.M |= ϕ.1 The following is a typical specification:
it is always the case that at most one of several concurrent processes has access to a shared
resource. Letting ci indicate that processi has access to the shared resource of interest, the
specification is expressed succinctly in CTL asAG¬(c1 ∧ c2). Here, the basic modalityAG
is composed of two temporal operatorsA, representingall future paths, andG, representing
all states on a path. Formulas of the formAG(p), with p being a Boolean expression, are of
special importance. In our experience, over 90% of the formulas written in practice can be
converted intoAG(p) form.

To cope with the state explosion problem several different techniques have been proposed.
The different approaches work well on large classes of examples but no one technique best

1 The symbol|= is overloaded. We use it in this paper both in the context of model checking and in the context
of DL reasoning.

suits all models. One method describes the modelsymbolicallyby representing the system
under verification by boolean functions. Two main symbolic methods are used to perform
model checking. The first, known asSMV [10], was introduced by McMillan in 1992. This
method is based on Binary Decision Diagrams (BDDs) [3] for representing the state space
as well as for performing the model checking procedure. The second is known as Bounded
Model Checking [2]. Using this method, the model under verification is translated into a
Boolean formula, and a satisfiability solver is applied to it to find a satisfying assignment.
Such an assignment, if found, demonstrates a bug in the model.

Other important methods represent states and transitions explicitly. Explicit state methods
appear to be more amenable to sophisticated state space reduction techniques. In this paper
we show how to use Description Logic reasoning to perform explicit state model checking
of the basic modalities of CTL on a synchronous model of computation, with the hope of
benefiting from the powerful DL reasoners currently available [7–9]. LetMD be a model de-
scription, whose sematics is given by the Kripke structureMMD , and letϕ be a specification.
We formulate a terminologyTMD ,ϕ over the DL dialectALC, and define a conceptCMD such
that by checking ifTMD ,ϕ |= CMD is consistent, we can determine whetherMMD |= ϕ.

In the next section we give the necessary background and definitions. Section 3 presents
the translation of a model checking problem into a terminology overALC, and demonstrate
it through an example. Section 4 concludes the paper.

2 Background and Definitions

Definition 1 (Description LogicALC) LetNC andNR be sets of atomic concepts{A1, A2, . . .}
and atomic roles{R1, R2, . . .}, respectively. The set ofconceptsC of the description logic
ALC is the smallest set includingNC that satifies the following.

– If C1, C2 ∈ C, then so are
• ¬C1 • C1 u C2

– If C ∈ C, andR ∈ NR, then so is
• ∃R.C

Additional concepts are defined as syntactic sugaring of those above:
• > = A t ¬A, for someA • ∀R.C = ¬∃R.¬C
• C1 t C2 = ¬(¬C1 u ¬C2)

An inclusion dependencyis an expression of the formC1 v C2. A terminologyT consists
of a finite set of inclusion dependencies.

Thesemanticsof expressions is defined with respect to a structureI = (∆I , ·I), where
∆I is a non-empty set, and·I is a function mapping every concept to a subset of∆I and
every role to a subset of∆I ×∆I such that the following conditions are satisfied.
• (¬C)I = ∆I \ CI • (C1 u C2)I = CI

1 u CI
2

• ∃R.C = {x ∈ ∆I | ∃y ∈ ∆I s.t.(x, y) ∈ RI ∧ y ∈ CI}
A structuresatisfies an inclusion dependencyC1 v C2 if CI

1 ⊆ CI
2 . Theconsistency

problem forALC asks ifT |= C holds; that is, if there existsI such thatCI is non-empty
and such thatCI

1 ⊆ CI
2 holds for eachC1 v C2 in T .

Definition 2 (Kripke Structure) LetV be a set of Boolean variables. AKripke structureM
overV is a four tupleM = (S, I,R, L) where

1. S is a finite set of states.
2. I ⊆ S is the set of initial states.
3. R ⊆ S × S is a transition relation that must be total, that is, for every states ∈ S there

is a states′ ∈ S such thatR(s, s′).
4. L : S → 2V is a function that labels each state with the set of variables true in that state.

In practice, the full Kripke structure of a system is not explicitly given. Rather, a model is
given as a set of Boolean variablesV = {v1, ..., vn}, their initial values and their next-state
assignments. The definition we give below is an abstraction of the input language ofSMV[10].

Definition 3 (Model Description) Let V = {v1, ..., vk} be a set of Boolean variables. A
Model Descriptionover V is a tupleMD = (IMD , [〈c1, c′1〉, ..., 〈ck, c′k〉]), whereIMD =
{v1 = b1, ..., vk = bk}, bi ∈ {0, 1}, andci, c′i are Boolean expressions overV .

The semantics of a model description is a Kripke structureMMD = (S, IM , R, L), where
S = 2V , L(s) = s for s ∈ S , IM = {IMD} andR = {(s, s′) : ∀1 ≤ i ≤ k, s |= ci implies
s′ |= (vi = 0) ands |= c′i ∧ ¬ci impliess′ |= (vi = 1)}.

Intuitively, a pair〈ci, c′i〉 defines the next-state assignment of variablevi in terms of the
current values of{v1, ..., vk}. That is,

next(vi) =

0 if ci
1 if c′i ∧ ¬ci
{0, 1} otherwise

where the assignment{0, 1} indicates that for every possible next-state value of variables
v1, ...vi−1, vi+1, ..., vn there must exist a next-state withvi = 1, and a next-state withvi = 0.

We give the definition of Basic CTL formulas below. Our definition differs from full CTL
in that temporal operators cannot be nested. Note though, that most of the formulas written in
practice can be converted intoAG(p) form, which is included in Basic CTL.

Definition 4 (Basic CTL formulas [4]) – The formula (v = 1) is an atomic CTL formula
– If p andq are atomic CTL formulas, then so are
• ¬p • p ∧ q

– If p andq are atomic CTL formulas then the following are Basic CTL formulas:
• EXp • AXp • E[pV q] • A[pV q]

– If ϕ is a Basic CTL formula then so is• ¬ϕ.
Additional operators are defined as syntactic sugaring of those above:

• E[pUq] = ¬A[¬pV ¬q] • A[pUq] = ¬E[¬pV ¬q] • AFp = A[true Up]
• EFp = E[true Up] • AGp = ¬EF¬p • EGp = ¬AF¬p

The semantics of a CTL formula is defined with respect to a Kripke structureM =
(S, I,R, L) over a set of variablesV = {v1, ..., vk}. A path inM is an infinite sequence
of states(s0, s1, ...) such that each successive pair of states(si, si+1) is an element ofR. The
notationM, s |= ϕ, means that the formulaϕ is true in states of the modelM .

– M, s |= (v = 1) iff v ∈ L(s)
– M, s |= p ∧ q iff M, s |= p andM, s |= q
– M, s |= ¬ϕ iff M, s 6|= ϕ

– M, s0 |= AXp iff for all paths(s0, s1, ...),M, s1 |= p
– M, s0 |= EXp iff for some path(s0, s1, ...),M, s1 |= p
– M, s0 |= A[pV q] iff for all paths(s0, s1, ...), either for alli ≥ 0,M, si |= q or there exists
n ≥ 0 such thatM, sn |= p and for all0 ≤ i ≤ n,M, si |= q

– M, s0 |= E[pV q] iff for some path(s0, s1, ...), either for alli ≥ 0, M, si |= q or there
existsn ≥ 0 such thatM, sn |= p and for all0 ≤ i ≤ n,M, si |= q

We say that a Kripke structureM = (S, I,R, L) satisfies a Basic CTL formulaϕ (M |=
ϕ) if for all si ∈ I,M, si |= ϕ.

Definition 5 (Formula type) Letϕ be a Basic CTL formula, expressed in terms ofEX,AX,
E[pV q] or A[pV q]. We say thatϕ is of Type A if the outermost path quantifier is A, and Type
E otherwise. We say thatϕ is a negatedformula if its path quantifier is preceded by an odd
number of negations.

3 Model Checking Using Description Logic Reasoning

We give a linear reduction of a model checking problem into a consistency check overALC.
LetMD = (I, [〈c1, c′1〉, ..., 〈ck, c′k〉]) be a model description for the modelMMD = (S, I,R, L),
overV = {v1, ...vk}. Letϕ be a Basic CTL formula. We generate a terminologyTMD ,ϕ, lin-
ear in the size ofMD and constant in the size ofϕ, and a conceptInit, such that by checking
if TMD ,ϕ |= Init is consistent, we can determine whetherMMD |= ϕ.

We constructTMD ,ϕ as the union of three terminologies,TMD ,ϕ = Tk ∪T type
MD ∪Tϕ where

Tk depends only on the numberk of variables inV , the terminologyT type
MD depends on the

model description as well as on thetypeof the formulaϕ (with typebeingA or E), andTϕ

depends only on the formulaϕ.
We start by describing the primitive concepts and roles which are used in all of the termi-

nologies, and then provide the construction for each of the three terminologies. We conclude
this section with a proposition that relates the consistency of the conceptInit with respect to
TMD ,ϕ to the satisfaction ofϕ in the modelMMD .

Concepts and RolesWe introduce one primitive roleR corresponding to the transition rela-
tion of the model. For each variablevi ∈ V we introduce three primitive concepts:Vi, ViN
andViT . The conceptVi corresponds to the variablevi, whereVi denotesvi = 1 and¬Vi

denotesvi = 0. The conceptViN corresponds in a similar way to the next-state value ofVi.
The conceptViT is needed to encode an execution step of the model as a sequence throughR,
as will be explained in the sequel. Finally, one primitive conceptCϕ is introduced to assist the
encoding of the specificationϕ. Depending onϕ, this concept is not always needed. In total,
for a setV with k variables, the terminologyTϕ

MD will consist of3k + 1 primitive concepts
and one role.

Constructing Tk For a transition (s, s′)∈ R in the modelMMD , the states may differ from
s′ in the values of some or all of the variablesv1, ..., vk. That is, in one transition, many
variables may simultaneously change their values. To achieve this with our single roleR, we
encode every transition of the modelMMD as a series of “micro-transitions” throughR, each
of which determines the next-state value of one variable only. To ensure that every variable

makes a move only on its turn, we use the conceptsViT . We allow exactly one ofV1T, ..., VkT
to hold on each state, and in the correct order, by introducing the following concept inclusions.

– ViT v (∀R.Vi+1T) ¬ViT v (∀R.¬Vi+1T) for 1 ≤ i < k and
VkT v (∀R.V1T) ¬VkT v (∀R.¬V1T)

The actual model states correspond to where conceptV1T holds, after a cycle where each
of the variables has taken a turn. Thus, we have to make sure to propagateVi, ViN values
appropriately, by introducing the following inclusions for1 ≤ i ≤ k.

– WhenV1T holds,Vi should assume its next value that has been stored inViN .
(V1T u ViN) v Vi (V1T u (¬ViN)) v (¬Vi)

– PropagateVi at every step in the cycle, except the last one.
((¬VkT) u Vi) v (∀R.Vi) ((¬VkT) u (¬Vi)) v (∀R.(¬Vi))

– PropagateViN , unlessViT holds, (in which case a new value is computed).
((¬ViT)uViN)) v (∀R.ViN) ((¬ViT) u (¬ViN)) v (∀R.(¬ViN))

In total, for k variables,Tk will consist of 8k concept inclusions, each of them of constant
size.

Constructing T type
MD We now translate the model descriptionMD = (I, [〈c1, c′1〉, ..., 〈ck, c′k〉]).

Let I = {v1 = b1, ..., vk = bk}, bi ∈ {0, 1}. To encode the initial condition of the model, we
introduce the concept inclusion

– Init v (D1u, ...,uDk u V1T u ¬V2Tu, ...,u¬VkT)

WhereDi = Vi if (vi = 1)∈ I, andDi = ¬Vi if (vi = 0)∈ I. TheViTs are needed to ensure
the initial condition corresponds to a real model state (V1T), and that onlyV1 is allowed to
make a move (¬ViT).
Let the pair〈ci, c′i〉 describe the next state behavior of the variablevi. That is,

next(vi) =

0 if ci
1 if c′i ∧ ¬ci
{0, 1} otherwise

whereci, c′i are Boolean expressions overv1, ..., vk, and{0, 1} is a non-deterministic assign-
ment, allowingvi to assume both0 and1 in the next state. LetCi be the concept generated by
replacing everyvi in ci with the conceptVi, and∧ with u. LetC ′

i be the concept correspond-
ing to c′i in the same way. We introduce the following concept inclusions.
(ViT u Ci) v ∃R.¬ViN
(ViT u ¬Ci u C ′

i) v ∃R.ViN
The encoding of the non-deterministic assignment as a concept inclusion, has two flavors,
depending on thetypeof the formulaϕ.

– If ϕ is of typeA, we call the terminologyT A
MD , and introduce the inclusion:

(ViT u ¬Ci u ¬C ′
i) v (∃R.ViN u ∃R.¬ViN).

– If ϕ is of typeE, we call the terminologyT E
MD , and introduce the inclusion:

(VIT u ¬Ci u ¬C ′
i) v (∃R.ViN t ∃R.¬ViN).

In total, T type
MD will consist of one concept,Init, of size2k, and 3 concept inclusions of

constant size.

Constructing Tϕ Letϕ be the formula to be verified, written in terms ofEXp,AXp,E[pV q]
or A[pV q]. Let ψ be the formula derived fromϕ by peeling off all negations preceding the
outermost path quantifier, as well as the path quantifier itself. (e.g.,¬E[pV q] becomes[pV q]).
ψ can be one of two formulas only:Xp or [pV q], wherep, q are Boolean combinations of
variablesvi. LetP,Q be the translation ofp, q using the corresponding conceptsVi.

– If ψ = Xp, we introduce one concept inclusion toTϕ :
Init v ∀R.∀R...∀R︸ ︷︷ ︸

k

.P

We need a sequence ofk transitions since one transition in the modelMMD is translated
into k micro-transition in our terminology.

– If ψ = [pV q] we use the auxiliary conceptCϕ introduced for this purpose. Intuitively,
[pV q] means “p releasesq”. That is, q must hold along an execution path, unlessp ap-
pears at one stage, in which caseq is released, and does not have to hold any longer. We
introduce the following concept inclusions toTϕ.

(Cϕ u ¬P) v ∀R.Cϕ

(Cϕ u P) v ∀R.¬Cϕ

¬Cϕ v ∀R.¬Cϕ

V1T v (¬Cϕ tQ)

The first three concept inclusions above record the behavior of the conceptP .Cϕ holds in
a state if and only ifP has never held on the path leading to this state. The forth inclusion
guarantees that on all the ‘real’ execution states (whereV1T holds), ifP has not appeared
until the previous state (¬Cϕ) thenQ must hold.

In total,Tϕ will consist of at most 4 concept inclusions, with one of them possibly of sizek,
and the rest of constant size.TMD ,ϕ = Tk ∪ T type

MD ∪ Tϕ is therefore of size linear ink.
The following proposition relates the consistency of the conceptInit with respect to

TMD ,ϕ to the satisfaction ofϕ in the modelMMD . Its proof will be given in a full version of
the paper.

Proposition 6. LetMD denote a model description for a modelMMD , and letϕ be a Basic
CTL specification. Then each of the following holds.

1. If ϕ is of typeA andnot negated, thenMMD |= ϕ iff Tk ∪ T A
MD ∪ Tϕ |= init consistent.

2. If ϕ is of typeE andnot negated, thenMMD |= ϕ iff Tk ∪ T E
MD ∪ Tϕ |=init consistent.

3. If ϕ is of typeA andnegated, thenMMD |= ϕ iff Tk ∪ T A
MD ∪ Tϕ 6|=init consistent.

4. If ϕ is of typeE andnegated, thenMMD |= ϕ iff Tk ∪ T E
MD ∪ Tϕ 6|=init consistent.

3.1 An Example

We illustrate our method by an example. Consider the model description

MD = (I, [〈v1 ∧ v2, v3〉, 〈¬v2, v1 ∧ ¬v1〉, 〈¬v1, v1〉])

overV = {v1, v2, v3} with I = {v1 = 0, v2 = 1, v3 = 0}. Figure 1 draws the states and
transitions of the Kripke structureMMD described byMD. Let the formula to be verified be

Fig. 1.A Kripke structure forMD

ϕ = AG(¬v1 ∨ ¬v2 ∨ ¬v3). Note thatMMD |= ϕ, as can be seen in Figure 1, since the state
(1, 1, 1) can never be reached from the initial state. The terminologyTϕ

MD derived fromMD
andϕ will use the primitive concepts{V1, V2, V3, V1N,V2N,V3N,V1T, V2T, V3T} and the
primitive roleR. By the construction given in section 3, the set of concept inclusions will be
the following.

The Construction of Tk

– Concept inclusions ensuring control over the turn to make a move
V1T v (∀R.V2T) ¬V1T v (∀R.¬V2T)
V2T v (∀R.V3T) ¬V2T v (∀R.¬V3T)
V3T v (∀R.V1T) ¬V3T v (∀R.¬V1T)

– Concept inclusions to propagate the values ofVi

((¬V3T) u V1) v (∀R.V1) ((¬V3T) u (¬V1)) v (∀R.(¬V1))
((¬V3T) u V2) v (∀R.V2) ((¬V3T) u (¬V2)) v (∀R.(¬V2))
((¬V3T) u V3) v (∀R.V3) ((¬V3T) u (¬V3)) v (∀R.(¬V3))

– Concept inclusions to propagate the values ofViN
((¬V1T) u V1N) v (∀R.V1N) ((¬V1T) u (¬V1N)) v (∀R.(¬V1N))
((¬V2T) u V2N) v (∀R.V2N) ((¬V2T) u (¬V2N)) v (∀R.(¬V2N))
((¬V3T) u V3N) v (∀R.V3N) ((¬V3T) u (¬V3N)) v (∀R.(¬V3N))

– Concept inclusions to moveVi equal toViN wheneverV1T holds
(V1T u V1N) v V1 (V1T u (¬V1N)) v (¬V1)
(V1T u V2N) v V2 (V1T u (¬V2N)) v (¬V2)
(V1T u V3N) v V3 (V1T u (¬V3N)) v (¬V3)

The Construction of T type
MD We need to determine thetype of ϕ. Note thatAG(p) =

A[false V p], thusϕ can be written asϕ = A[false V (¬v1 ∨ ¬v2 ∨ ¬v3)]. The type of
ϕ is thenA. We proceed to buildT A

MD :

– The initial condition
INIT v (¬V1 u V2 u ¬V3 u V1T u ¬V2T u ¬V3T)

– Computation ofV1

(V1T u V1 u V2) v (∃R.(¬V1N))
(V1T u (¬(V1 u V2)) u V3) v (∃R.V1N)
(V1T u (¬(V1 u V2)) u (¬V3)) v ((∃R.V1N) u (∃R.(¬V1N)))

– Computation ofV2

(V2T u V2) v ((∃R.V2N) u (∃R.(¬V2N)))
(V2T u (¬V2)) v (∃R.(¬V2N))

– Computation ofV3

(V3T u V1) v (∃R.V3N) (V3T u (¬V1)) v (∃R.(¬V3N))

The Construction of Tϕ Sinceϕ = A[false V (¬v1 ∨ ¬v2 ∨ ¬v3)], then according to the
translation in section 3, we need to introduce a conceptCϕ, in order to record the behavior of
⊥ (the translation offalse). However, the behavior of⊥ cannot change along the execution
path, and we get that¬Cϕ is always false. Thus we can omit the conceptCϕ altogether, and
add only the concept inclusion:V1T v (¬V1 t ¬V2 t ¬V3).

By Proposition 6 we get thatMMD |= ϕ if and only if Tk∪ T A
MD ∪ Tϕ |= Init consistent.

4 Summary

In this paper we have shown that model checking the basic modalities of CTL can be per-
formed using DL reasoning. First experiments using the DL reasoner “Racer” [7] were con-
ducted, with reassuring results. In the future, we plan to test our method on real models from
the hardware industry. Several other related directions seem interesting for further investiga-
tion. Firstly, it seems possible, using additional calls to “Racer”, to handle full CTL model
checking. Secondly, we are interested in implementing symbolic model checking algorithms
in ALC and applying these different model checking approaches to available test beds.

Acknowledgements

The authors gratefully acknowledge the support for this result provided by Nortel networks
Ltd. and by NSERC Canada.

References

1. S. Ben-David, C. Eisner, D. Geist, and Y. Wolfsthal. Model checking at IBM.Formal Methods in System
Design, 22(2):101–108, 2003.

2. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without bdds. InTACAS’99, 1999.
3. R. Bryant. Graph-based algorithms for boolean function manipulation. InIn IEEE Transactions on Comput-

ers, volume c-35 no. 8.
4. E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons using branching time temporal

logic. In Proc. Workshop on Logics of Programs, LNCS 131, pages 52–71. Springer-Verlag, 1981.
5. E. M. Clarke, O. Grumberg, and D. Peled.Model Checking. The MIT Press, 2000.
6. F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and M. Y. Vardi. Benefits of bounded

model checking at an industrial setting. InCAV’01, july 2001.
7. V. Haarslev and R. Moller. Racer system description. InInternational Joint Conference on Automated

Reasoning (IJCAR’2001), volume 2083.
8. I. Horrocks. The FaCT system. pages 307–312, 1998.
9. I. Horrocks and U. Sattler. Decidability ofSHIQwith complex role inclusion axioms.Artificial Intelligence,

160(1–2):79–104, Dec. 2004.
10. K. McMillan. Symbolic model checking, 1993.
11. K. Yorav, S. Katz, and R. Kiper. Reproducing synchronization bugs with model checking. InCHARME,

2001.

