
A Declarative and Classifier Gesture
Recognition Method for Creating an Effective

Feedback and Feedforward System

Alessandro Carcangiu

Deptment of Electrical and Electronic Engineering,
University of Cagliari, Cagliari 09123 Italy

Abstract. For recognizing gestures in an interactive application, we
could apply different approaches, which offer many advantages and dis-
advantages. On the one hand, Machine Learning techniques guarantee
a high accuracy and robustness to noise, but they do support the cre-
ation of effective feedback and feed-forward systems since they do not
provide intermediate information. On the other hand, we can find in the
literature declarative and compositional methods, which allow gesture
sub-parts identification at the cost of a lower recognition rate. There-
fore, one of the most common problems in gesture interface development
is how to set the trade-off between a high precision in recognition and the
support for user’s guidance. With this mind, the main goal of my Ph.D. is
finding a way for filling the gap between these two approaches, bridging
the gap between Machine Learning and declarative and compositional
approaches.

1 Introduction

In recent years, gesture interaction gained importance in many interactive set-
tings, such as e.g., houses, offices and hospitals. Nowadays, smartphones, tablets,
laptop and desktop computers are equipped with gesture input devices, which
complement more standard techniques like pointing and typing. In general, we
define an interactive gesture as a body movement that recognized through motion
sensing input device. The tracking capabilities influence different aspect in the
interaction design. For instance different devices track different body parts: fin-
gertips (touchscreens), hands and fingers (Leap Motion [12], Intel RealSense [7]),
arms or legs (Kinect [10]).

Despite their spread, window toolkits provide little support for managing
gestures in interface development: they allow either to define high-level events
or to track synchronously the raw data coming from the device. This increases
the development complexity and, in many cases, decreases the usability of the
resulting interface. A gesture is not an atomic event like a mouse-click: it usu-
ally requires different movements and may last for many seconds, which is a
perceivable timespan for a user. During that time, s/he user needs guidance in
completing the movement and s/he should be informed about the system in-
terpretation of the input. For these reasons, developers need to provide users

with advices on gesture performance during the interaction: i) which movements
were recognized by the application (defined as feedback) and ii) the possible
interface state(s) reachable after the user finishes the current gesture (defined as
feedforward) [20].

While introducing feedback and feedforward in gesture interfaces has positive
effects on the user experience (UX) [20], developers have technical difficulties in
building such systems. On the one hand, the interface needs a high recognition ac-
curacy. This problem was addressed through different machine learning methods,
like Hidden Markov Models (HMM), Dynamic Time Warping (DTW), Time-
Delay Neural Networks (TDNN) and Finite-State Machines (FTM) [11,14,5],
support vector machines [11]. All methods demonstrated a high recognition ac-
curacy and they are suitable for recognizing complex gestures. However, they
do not support composition, they need many examples in the training phase
and they usually provide a single class label for the whole gesture, which is
represented as an atomic event even if the time dimension is internally taken
into account by the recognition approach. On the other hand, we can find in
the literature different methods for describing the temporal evolution of a ges-
ture through composition, for instance GestIT [18,19] and Proton++ [9,8]. They
declaratively define a gesture through a set of composed sub-parts, allowing their
identification during the performance. The drawback in these methods is the ac-
curacy: the sub-part identification relies on heuristics which not are as precise as
the classification approaches. With this mind, we have proposed DEICTIC[2],
which integrates the declarative and compositional gesture description model
GestIT [18,19] with HMMs and uses HMMs in order to recognize basic gesture
segments (or primitives) instead of whole gestures.

2 Related Work

In this section we will briefly summarise the state of the art for the approaches
we are trying to bridge.

2.1 Machine Learning-based Approaches

Computer Vision-based approaches have just tried to identify gesture sub-parts
in order to: i) reduce the size of the training dataset and ii) improve their per-
formances. Chen et al. [4] define primitives in a context-grammar established in
advance using a top down approach, which is more suitable to UI designers; how-
ever, grammars were not created taking into account the gesture meaning from
the user perspective. In [21], Yang et al. identified primitives by using a bottom-
up clustering approach, aimed at reducing the training set size and at improving
the organisation of unlabeled datasets for speeding up its processing. A gesture
is labelled and defined with sequences of primitives. This representation at first
may be useful for building UIs. Unfortunately, the automatic identification of
primitives usually lead to a set of basic gestures that is difficult to understand

for designers, and this decreases their applicability for creating feedback and
feed-forward systems.

In [13], primitives are used together a three-level HMM classifier architecture
for recognizing i) the primitives, ii) their composition and iii) the pose or gesture.
However, also in this case unsupervised learning was used for defining both
primitives and their composition, which is not suitable for building UIs.

2.2 Compositional and Declarative-based Approaches

As mentioned earlier, declarative approaches allow splitting a gesture into sev-
eral sub-components and there are different compositional approaches based on
heuristic gesture recognition. An example could be GestIT [18,19] and Pro-
ton++ [9,8]. The latter, is a multi-touch framework, which allows describing
declaratively custom gestures, separating the temporal sequencing of the events
from the related code to the user interface behaviour. It also allows developers to
describe custom gestures in a declarative way, through regular expressions and
using the operators of concatenation, alternation and Kleene’s star. Developers
could define a regular expression by a triplet which is composed by an event
type, a touch identifier and the interface item hit by the touch.

Fig. 1. The figure shows the editor tool for Proton [9,8] and an example of a generated
expression which describes a gesture

In GestIT [18,19] gestures are modelled through expressions that define their
temporal evolution. The expressions are obtained by using two main elements: i)
ground term or primitive, which describes the smallest part of a gesture and in
general is associated to a fundamental movement which may considered atomic
by users, ii) and composite terms, which represent a set of operators allowing
to link ground terms between them or other composite terms, in order to define
more complex gesture. To describe the set of operators consider two gesture g
and h (either ground or composite terms): g∗ is the continue iteration of g; g � h

defines the sequence that connects g with h, firstly the user performs g then h;
g ‖ h defines that g and h are performed in parallel simultaneously; g[]h is the
choice between either g or h; g[> h disables the iteration of g by performing h;
g |=| h the connected gesture can be performed in any order (e.g. first doing g
and then h or vice versa).

Fig. 2. Term operators hierarchy from GestIT [18,19].

Another example is Midas [15] that introduced a rule-based approach for
multitouch gestures. These rules work on different features, for example the 2D
positions, the finger tracking state or its speed and consists of two components:
a prerequisite part and an action part.

2.3 Feedback and Feedforward

As we discussed in previous sections, feedback and feedforward systems were
developed to help user during the interaction, in particular for inexperienced
users who interface with specialised machines which have a low affordance or
in situations where the users lack familiarity with the interface. These systems
help users in different ways, for example showing what will be the result of a
particular input or explaining how to complete a certain operation.

In gesture interfaces feedback is used to show which portion of the gesture has
been recognized and what the system understood from the user’s movements.
These suggestions can help the users to understand what movements they are
doing and, eventually, to repair both recognition or execution errors. Feedforward
helps users during the interaction differently i.e., showing the effects on the
UI of the possible ways for concluding the current gesture, thus guiding the
user towards the desired effect. An effective visualization of such guidance has
been described by Bau and Mackay [1], through a dynamic guide that combines
feedback and feedforward to help users to learn, execute and remember gesture
sets. Their approach shows a graphic representation of the gesture part that has
been correctly recognized and, at the same time, a representation for all possible
paths that may be followed for completing a correct interaction.

Fig. 3. In this image we can see an example of feedback and feed-forward system
proposed by OctoPocus [1].

LightGuide [17] proposes a similar approach in a 3D setting, showing feed-
back and feedforward directly on the body parts which user should move to
perform a gesture. This approach using a set of projector and Kinects to show
the suggestions.

Fig. 4. This figure shows an overview of the range of 3D cues that LightGuide [17]
creates to help guide a users movement. In (a), a user is shown a 2D arrow with a circle
that moves in the horizontal plane, (b) shows a 3D arrow, (c) a 3D path where blue
indicates the movement trajectory and (d) uses positive and negative spatial coloring
with an arrow on the users hand to indicate depth.

Schwarz et al. [16] proposed another model which is a general architecture
with the goal of proving support for continuous feedback about uncertainty.
Their work is based on prior work in modelling uncertainty using Monte Carlo
and tracks multiple interfaces; indeed, this architecture shows all these possible
new system states for each sequence of input that the user may have intended. It
works reducing the number of possible interfaces (according to the user input),
combining and showing these in a single interface. Summarising, the model shows
to user which will be the new program state basing on user input and the most

likely states whether there are some similar actions. In addition, when the user
completes the task, the architecture allows user to return to the previous state
or to select another state.

Fig. 5. An example of feedback system for a tablet app proposed by Schwarz et al. [16]

3 DEICTIC

As we said in previous section, definitively DEICTIC we combined the declar-
ative and compositional gesture description model GestIT [18,19] with HMMs
in order to integrates the declarative advantages with the accuracy and the ro-
bustness to input offered by classifiers. DEICTIC, similarly to GestIT, defines
a gesture by using ground and composite terms. In our approach, a primitive
movement is recognized by a single left-to-right trained HMM while the compos-
ite operators are obtained by combining the HMMs of their operands. The result
of composition is a new HMM which provides information during the recognition
and recognizes the gesture according to the temporal semantics. The two follow
paragraphs will explain how DEICTC uses these components.

3.1 Ground Terms.

A basic movement in DEICTIC is described by a single HMM which uses a left-
to-right (or Bakis [6]) topology. For defining a “basic” HMM, we must define his
number of states and train the HMM for learning the probability distributions
of both transitions and observations from a set of correct performance samples.

In DEICTIC we defined three 2D primitives:

1. Point which defines the starting position of the stroke. It is defined speci-
fying the x and y coordinates and its notations is P (x, y);

2. Line defines a linear movement of a specified offset in the x and y axes
starting from the current position. It could be used to describe a vertical,
horizontal or diagonal movement and we represent a line with the notation
L(∆x,∆y);

3. Arc specifies a quarter of a circle starting from the current position and
finishing at the specified offset. The arc could follow a clockwise or counter-
clockwise direction and we represent it with the notation A�(∆x,∆y) (clock-
wise direction) or A	(∆x,∆y) (counter-clockwise direction).

3.2 Composite Terms

DEICTIC allows defining complex gesture by using five GestIT composite terms:
iteration, sequence, choice, disabling and parallel (we do not use order indepen-
dence because it could be derived from the other operators). These composite
terms are generated in DEICTIC starting from the HMM of their operands
automatically without requiring a new training step for the generated HMM.
We explain in the following list how the composition is accomplished for each
operator.

– Sequence. Consider a generic stroke g, its subcomponents and their HMMs.
The HMM for recognizing g is obtained by connecting the end state of its
first subcomponent with the start state of the second component and so on.
The number of states of the new HMM is made up of the sum of the numbers
of states of each model.

– Iterative The HMM for recognizing the iteration of the generic stroke g∗ is
obtained, starting from the basic HMM, by adding a transition from all states
that are connected with the ending state to all states that are connected
with the start state. In this way, we obtain a loop in the topology without
changes in the probability distributions. Obviously, the number of states of
the composed HMM will be the same of the basic HMM.

– Choice. Consider now the generic strokes g. Now, suppose the possibility to
describe g through two different primitive sequences: g′ and g′′. The choice
between the two descriptions is obtained putting the original HMMs in two
separate recognition lines, without any transition between their states. The
only contact points are the starting and the final states of the new HMM. The
HMM obtained, once again, has a number of states which growns linearly.

– Disabling. Consider the case of two generic strokes g and h and the dis-
abling operator. In DEICTIC the disabling operator for example g∗[> h,
and its HMM are obtained in two steps: first, we add a transition between
the starting states of each ground term in g∗ stroke to the starting state of
h; second, a link is added from the ending state of g∗ to the starting state of
h. This is necessary for supporting the case when the user performs the first
gesture entirely before starting h. For maintaining the outgoing probability
property, we split the original transitions likelihood among all involved arcs.

– Parallel. Finally, consider the possibility to do in parallel two different
strokes, g and h that are totally independent in their transitions. The com-
posite HMM for g ‖ h will contain a state for each pair (stateg,stateh), that
are linked if only the transition is valid in both starting models. For example,
if we are in the state (g1, h1), we can: i) go forward on h, e.g. g1, h2; ii) go
forward on g, g2, h1 or iii) go forward on both, g2, h2). The hmm obtained

has a number of states equal to n ∗m, where n is the number of states of Z
and m the number of states of �. Since the two gestures are independent the
transition probabilities of the composite HMM are given from the product
of probabilities of each gesture.

a) b)

c) d)

e)

Fig. 6. Composite HMM topologies: a) iterative, b) sequence, c) choice, d) disabling,
e) parallel. We denote with g and h the gestures HMMs to be composed.

3.3 Experiments and Results

In the test phase, our main goal is to prove the efficiency and the efficacy of our
approach recognizing gestures. First of all, we would prove if DEICTIC is usable

in a feedback and feed-forward systems. Second, we would done a comparison
between DEICTIC and machine learning-based approach about accuracy rate.
For doing it, we choose ad-hoc HMM that is a hmm trained with the whole
gesture.
Taking this into consideration, we tested DEICTIC with a dataset created by
ourself and just used on our previous work about DEICTIC [3]. It is made up
by 10 gestures strokes with 60 samples for each one. They are performed by 14
different people and recorded through Leap Motion device.
In the preliminary test we used a subset of these gesture. The hmms created
with DEICTIC are trained only if they are used for recognizing basic movement;
conversely, the ad-hoc HMMs are trained with the whole gesture and we evalu-
ated the recognition performance using the leave-one-out technique. The 1 shows
their description model and the recognition rate results obtained with DEICTIC
and ad-hoc HMMs.

Gesture Model DEICTIC HMM

← Point(0, 0)� Line(−1, 0) 100% 100%
→ Point(0, 0)� Line(1, 0) 100% 100%
V Point(2, 2)� Line(1,−2)� Line(1, 2) 100% 100%∧

Point(0, 0)� Line(1, 2)� Line(1,−2) 100% 100%
Point(0, 0)� Line(2, 2)� Line(0,−2)�

Line(−4, 2)
98.34% 98.34%

4 Point(0, 2)� Line(−1,−2)� Line(2, 0)�
Line(−1, 2)

100% 100%

�
Point(0, 1)� Line(0,−1)� Line(2, 0)�

Line(0, 1)� Line(−1, 0)
98.34% 100%

Table 1. Recognition rate comparison between HMM defined through DEICTIC and
trained ad-hoc (HMM column).

4 Conclusion and Future Works

Summarising, DEICTIC is much accurate than the declarative methods and al-
lows automatic generation of composed HMM. In addition, taking advantage of
HMM, DEICTIC predicts the continuation of a gesture and permits sub-part
identification helping developers to create feedback and feed-forward systems.
Last but not least, the HMMs obtained from composition do not require ad-
ditional training with respect to the basic HMMs; it should be noted that, for
a particular gesture, the time asked to train and compose its basic HMMs is
much less than is required to define and train its ad-hoc HMM. However our
approach has some limits. First of all it does not support on-line recognition e
has not the same accuracy of ad-hoc HMM. Another problem is the number of

states of composed HMMs: it tends to increase or linearly in sequence, choice
and disabling case or quadratically in parallel case.
In order to improve DEICTIC, we have thought to substitute HMMs trying other
machine learning-based method. We have looked for an approach which man-
ages sequential data, supports on-line recognition and preserves a high precision
rate. With this mind, we have started to study neural networks, in particular
the Time Delay Neural Network, or TDNN. Now we do not know whether this
method could be useful for us and we think this doctoral consortium is the best
opportunity to obtain advices and suggestions.

At the same time, we are working on: i) defining an extensive set of informa-
tion which reports all the point that gesture recognizer methods must expose in
order to build effective feedback and feed-forward systems; ii) creating a set of
guidelines for helping developers to select the appropriate classification technique
according to the information needed by the feedback and feed-forward system
at hand; iii) using DEICTIC in a real-time scenarios and testing its features
building a feedback and feed-forward systems.

5 University Doctoral Program Context

I am Alessandro Carcangiu, a Phd student at the department of electrical
and electronic engineering of the University of Cagliari. My tutors are Gior-
gio Fumera, Fabio Roli (from the same department) and Lucio Davide Spano
(from the Dep. of Mathematics and Computer Science). In October 2015 I have
started my Phd and I planed to defend my thesis in October 2018.

References

1. Bau, O., Mackay, W.E.: Octopocus: a dynamic guide for learning gesture-based
command sets. In: Proceedings of the 21st annual ACM symposium on User inter-
face software and technology. pp. 37–46. ACM (2008)

2. Carcangiu, A.: Gesture recognition through declarative and classifier approach. In:
Proceedings of the 22nd International Conference on Intelligent User Interfaces
Companion. pp. 185–188. ACM (2017)

3. Carcangiu, A., Spano, L.D., Fumera, G., Roli, F.: Gesture modelling and recog-
nition by integrating declarative models and pattern recognition algorithms. In:
Proceedings of the 22nd International Conference on Intelligent User Interfaces
Companion. pp. 185–188. ACM (2017)

4. Chen, Q., Georganas, N.D., Petriu, E.M.: Real-time vision-based hand gesture
recognition using haar-like features. In: Proceedings of IMTC 2007. pp. 1–6. IEEE
(2007)

5. Cheng, H., Yang, L., Liu, Z.: Survey on 3d hand gesture recognition. IEEE Trans.
Circuits Syst. Video Techn. 26(9), 1659–1673 (2016)

6. Elliott, R.J., Aggoun, L., Moore, J.B.: Hidden Markov models: estimation and
control, vol. 29. Springer Science & Business Media (2008)

7. Intel: Intel realse. http://www.intel.com/content/www/us/en/

architecture-and-technology/realsense-overview.html

8. Kin, K., Hartmann, B., DeRose, T., Agrawala, M.: Proton++ : A Customizable
Declarative Multitouch Framework. In: Proceedings of UIST 2012. pp. 477–486.
ACM Press, Berkeley, California, USA (2012)

9. Kin, K., Hartmann, B., DeRose, T., Agrawala, M.: Proton: multitouch gestures
as regular expressions. In: Proceedings of CHI 2012. pp. 2885–2894. ACM Press,
Austin, Texas, USA (2012)

10. Microsoft: Kinect. http://www.xbox.com/en-CA/en-EN/xbox-one/accessories/

kinect

11. Mitra, S., Acharya, T.: Gesture recognition: A survey. IEEE Trans. Systems, Man,
and Cybernetics, Part C 37(3), 311–324 (2007)

12. Motion, L.: Leap motion. https://www.leapmotion.com/
13. Natarajan, P., Nevatia, R.: Online, real-time tracking and recognition of human

actions. In: Proceedings of WMVC 2008. pp. 1–8. IEEE (2008)
14. Rautaray, S.S., Agrawal, A.: Vision based hand gesture recognition for human

computer interaction: a survey. Artif. Intell. Rev. 43(1), 1–54 (2015)
15. Scholliers, C., Hoste, L., Signer, B., De Meuter, W.: Midas: a declarative multi-

touch interaction framework. In: Proceedings of TEI 2011. pp. 49–56. TEI ’11,
ACM, New York, NY, USA (2011)

16. Schwarz, J., Mankoff, J., Hudson, S.E.: An architecture for generating interactive
feedback in probabilistic user interfaces. In: Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems. pp. 2545–2554. ACM (2015)

17. Sodhi, R., Benko, H., Wilson, A.: Lightguide: projected visualizations for hand
movement guidance. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. pp. 179–188. ACM (2012)

18. Spano, L.D., Cisternino, A., Paternò, F.: A Compositional Model for Gesture Def-
inition. In: Proceedings of HCSE 2012. pp. 34–52. Springer (2012)

19. Spano, L.D., Cisternino, A., Paternò, F., Fenu, G.: GestIT: a Declarative and
Compositional Framework for Multiplatform Gesture Definition. In: Proceedings
of EICS 2013. pp. 187–196. ACM (2013)

20. Vermeulen, J., Luyten, K., van den Hoven, E., Coninx, K.: Crossing the bridge over
norman’s gulf of execution: revealing feedforward’s true identity. In: Proceedings
CHI 2013. pp. 1931–1940. ACM (2013)

21. Yang, Y., Saleemi, I., Shah, M.: Discovering motion primitives for unsupervised
grouping and one-shot learning of human actions, gestures, and expressions. IEEE
transactions on pattern analysis and machine intelligence 35(7), 1635–1648 (2013)

