
Approximation Algorithms for Computing Certain
Answers over Incomplete Databases

Sergio Greco, Cristian Molinaro, and Irina Trubitsyna
{greco,cmolinaro,trubitsyna}@dimes.unical.it

DIMES, Università della Calabria, 87036 Rende (CS), Italy

Abstract. Certain answers are a widely accepted semantics of query answering
over incomplete databases. Since their computation is a coNP-hard problem, re-
cent research has focused on developing evaluation algorithms with correctness
guarantees, that is, techniques computing a sound but possibly incomplete set of
certain answers.
In this paper, we show how novel evaluation algorithms with correctness guaran-
tees can be developed leveraging conditional tables and the conditional evaluation
of queries, while retaining polynomial time data complexity.

1 Introduction

Incomplete information arises naturally in many database applications, such as data
integration [16], data exchange [2, 7, 13, 5], inconsistency management [3, 4, 12], data
cleaning [8], ontological reasoning [6], and many others.

A principled way of answering queries over incomplete databases is to compute
certain answers, which are query answers that can be obtained from all the complete
databases an incomplete database represents. This central notion is illustrated below.

Example 1. Consider the database D consisting of the two unary relations R = {〈a〉}
and S = {〈⊥〉}, where⊥ is a null value. Under the missing value interpretation of nulls
(i.e., a value for ⊥ exists but is unknown), D represents all the databases obtained by
replacing ⊥ with an actual value.

A certain answer to a query is a tuple that belongs to the query answers for every
database represented by D. For instance, consider the query σ$1=a(R), selecting the
tuples in R whose first value is equal to a. The certain answers to the query are {〈a〉},
because no matter how ⊥ is replaced, the query answers always contain 〈a〉. 2

For databases containing (labeled) nulls, certain answers to positive queries can be
easily computed in polynomial time by applying a “naive” evaluation, that is, treat-
ing nulls as standard constants. However, for more general queries with negation the
problem becomes coNP-hard. To make query answering feasible in practice, one might
resort to SQL’s evaluation, but unfortunately, the way SQL behaves in the presence of
nulls may result in wrong answers.

Specifically, as evidenced in [18], there are two ways in which certain answers and
SQL’s evaluation may differ: (i) SQL can miss some of the tuples that belong to certain
answers, thus producing false negatives, or (ii) SQL can return some tuples that do not

belong to certain answers, that is, false positives. While the first case can be seen as an
under-approximation of certain answers (a sound but possibly incomplete set of certain
answers is returned), the second scenario must be avoided, as the result might contain
plain incorrect answers, that is, tuples that are not certain. The experimental analysis
in [14] showed that false positive are a real problem for queries involving negation—
they were always present and sometimes they constitute almost 100% of the answers.

Example 2. Consider again the database D of Example 1. There are no certain answers
to the query R− S, as when ⊥ is replaced with a, the query answers are the empty set.

Assuming that R and S’s attribute is called A, the same query can be expressed in
SQL as follows:

SELECT R.A FROM R WHERE NOT EXISTS (
SELECT * FROM S WHERE R.A = S.A)

However, the answer to the query above is 〈a〉, which is not a certain answer. The
problem with the SQL semantics is that every comparison involving at least one null
evaluates to the truth value unknown, then 3-valued logic is used to evaluate the classical
logical connectives and, or, and not, and eventually only those tuples whose condition
evaluates to true are kept.

Going back to the query above, the nested subquery compares ⊥ with a, and since
such a comparison evaluates to unknown (because a null is involved) then the result of
the nested subquery is empty. As a consequence, the final result of the query is 〈a〉. 2

Thus, on the one hand, SQL’s evaluation is efficient but flawed, on the other hand,
certain answers are a principled semantics but with high complexity. One way of deal-
ing with this issue is to develop polynomial time evaluation algorithms computing ap-
proximate certain answers. In this regard, there has been recent work on evaluation
algorithms with correctness guarantees, that is, techniques providing a sound but pos-
sibly incomplete set of certain answers [14, 17, 18]. However, there are still very simple
queries for which the approximation can be unsatisfactory.

Example 3. Consider the database D of Example 1 and the query R − σ$1=b(S). In
this case, the certain answers are {〈a〉}. However, the approximation provided by the
approach in [14] is the empty set. 2

In this paper, we show how conditional tables and the conditional evaluation of
queries [15] can be leveraged to develop new approximation algorithms with correct-
ness guarantees. The approach allows us to keep track of useful information that can
be profitably used to determine if a tuple is a certain answer. The very basic idea is
illustrated in the following example.

Example 4. Consider again the database D of Example 1 and the query R− σ$1=b(S).
The conditional evaluation of the query is carried out by applying the “conditional”
counterpart of each relational algebra operator. Rather than returning a set of tuples, the
conditional evaluation of a relational algebra operator returns pairs of the form 〈t, ϕ〉,
where t is a tuple and ϕ is an expression stating under which conditions t can be derived.

Considering the query above, first the conditional evaluation of σ$1=b(S) is per-
formed, which gives 〈⊥, ϕ′〉, where ϕ′ is the condition (⊥ = b). Then, the conditional

evaluation of the difference operator is carried out, yielding 〈a, ϕ′′〉, where ϕ′′ is the
condition (⊥ 6= a) ∨ (⊥ 6= b). 2

Conditions are valuable information that can exploited to determine which tuples
are certain answers. For instance, from an analysis of ϕ′′ above, one can realize that the
condition is always true—thus, 〈a〉 is a certain answer. There might be different ways
of evaluating tuples’ conditions. In this paper, we propose some strategies.

2 Preliminaries

2.1 Incomplete databases

Basics. We assume the existence of the following disjoint countably infinite sets: a set
Const of constants and a set Null of (labeled) nulls. Nulls are denoted by the symbol
⊥ subscripted. A tuple t of arity k is an element of (Const ∪ Null)k, where k is a non-
negative integer. The i-th element of t is denoted as t[i], where 1 ≤ i ≤ k. Given a
possibly empty ordered sequence Z of integers i1, . . . , ih in the range [1..k], we use
t[Z] to denote the tuple 〈t[i1], . . . , t[ih]〉.

A relation of arity k is a finite set of tuples of arity k. A relational schema is a set
of relation names, each associated with a non-negative arity. A database D associates
a relation RD of arity k with each relation name R of arity k. With a slight abuse of
notation, when the database is clear from the context, we simply write R instead of RD

for the relation itself. The arity of R is denoted as ar(R). The sets of all constants and
nulls occurring in a database D are denoted by Const(D) and Null(D), respectively.
The active domain of D is adom(D) = Const(D) ∪ Null(D). If Null(D) = ∅, we say
that D is complete. Likewise, a relation is complete if it does not contain nulls.

A valuation ν is a mapping from Const ∪ Null to Const s.t. ν(c) = c for every c ∈
Const. Valuations can be applied to tuples, relations, and databases in the obvious way.
For instance, the result of applying ν to a database D, denoted ν(D), is the complete
database obtained from D by replacing every null ⊥i with ν(⊥i).

The semantics of a database D is given by the set of complete databases {ν(D) |
ν is a valuation}, also called possible worlds.
Query answering. We consider queries expressed with the relational algebra, that is,
by means of the following operators: selection σ, projection π, cartesian product ×,
union ∪, intersection ∩, and difference−. In the rest of the paper, a query is understood
to be a relational algebra expression built up from the above operators, unless otherwise
indicated. The result of evaluating a queryQ on a databaseD, treating nulls as standard
constants (i.e., every (labeled) null or constant is equal to itself and different from every
other element of Const ∪ Null), is denoted as Q(D). A query Q returning k-tuples is
said to be of arity k, and ar(Q) denotes its arity.

A widely accepted semantics of query answering relies on the notion of a cer-
tain answer. The certain answers to a query Q on a database D are the tuples in⋂
{Q(ν(D)) | ν is a valuation}. Computing certain answers is coNP-hard (data com-

plexity), even when the same null cannot occur multiple times [1].
For query answering, we will use a more general notion first proposed in [19] and

called certain answers with nulls in [18]. Specifically, given a query Q and a database

D, the certain answers with nulls cert(Q,D) is the set of all tuples t such that ν(t) ∈
Q(ν(D)) for every valuation ν.

A query evaluation algorithm has correctness guarantees for a query Q if for every
database D it returns a subset of cert(Q,D) [14]. When a query evaluation algorithm
has correctness guarantees for every query, we say that it has correctness guarantees.

2.2 Conditional tables

Syntax and semantics. Conditional tables have been proposed in [15]. Essentially, they
are relations (as defined in the previous subsection, and thus possibly containing nulls)
extended by one additional special column that specifies a “condition” for each tuple.
Formally, let E be the set of all expressions, called conditions, that can be built using
the standard logical connectives ∧, ∨, and ¬ with expressions of the form (α = β),
(α 6= β), true, and false, where α, β ∈ Const∪Null. We say that a valuation ν satisfies
a condition ϕ, denoted ν |= ϕ, if its assignment of constants to nulls makes ϕ true.

A conditional tuple (c-tuple for short) of arity k (k ≥ 0) is a pair 〈t, ϕ〉, where t is a
tuple of arity k and ϕ ∈ E . Notice that ϕmay involve nulls and constants not necessarily
appearing in t—e.g., t is the tuple 〈a,⊥1〉 and ϕ is the condition (⊥2 = c)∧(⊥1 6= ⊥3).

A conditional table (c-table for short) of arity k is a finite set of c-tuples of arity k.
A conditional database C associates a c-table RC of arity k with each relation name R
of arity k. With a slight abuse of notation, when the conditional database is clear from
the context, we simply write R instead of RC for the c-table itself.

The result of applying a valuation ν to a c-table T is ν(T) = {ν(t) | 〈t, ϕ〉 ∈
T and ν |= ϕ}. Thus, ν(T) is the complete relation obtained from T by keeping only
the c-tuples in T whose condition is satisfied by ν, and applying ν to such c-tuples. The
set of complete relations represented by T is rep(T) = {ν(T) | ν is a valuation}.

Likewise, a conditional database C = {T1, . . . , Tm} represents the following set of
complete databases: rep(C) = {{ν(T1), . . . , ν(Tm)} | ν is a valuation}.
Conditional evaluation. Below we recall the conditional evaluation of a query over a
conditional database (see [15, 11]). Basically, it consists in evaluating the relational al-
gebra operators so that they can take c-tables as input and return a c-table as output. The
conditional evaluation of a query over a conditional database is then simply obtained
by applying the conditional evaluation of each operator.

Let T1 and T2 be c-tables of arity n and m, respectively. In the definitions below,
for the union and difference operators it is assumed that n = m. For projection, Z is
a possibly empty ordered sequence of integers in the range [1..n]. For selection, θ is
a Boolean combination of expressions of the form ($i = $j), ($i = c), ($i 6= $j),
($i 6= c), where 1 ≤ i, j ≤ n, and c ∈ Const. The conditional evaluation of a relational
algebra operator op is denoted as ȯp. In the following, given two tuples t1 and t2 of
arity n, we use (t1 = t2) as a shorthand for the condition

∧
i∈[1..n]

(t1[i] = t2[i]).

– Projection: π̇Z(T1) = {〈t[Z], ϕ〉 | 〈t, ϕ〉 ∈ T1}.
– Selection: σ̇θ(T1) = {〈t, ϕ′〉 | 〈t, ϕ〉 ∈ T1 and ϕ′ = ϕ ∧ θ(t)},

where θ(t) is the condition obtained from θ by replacing every $i with t[i].
– Union: T1 ∪̇T2 = {〈t, ϕ〉 | 〈t, ϕ〉 ∈ T1 or 〈t, ϕ〉 ∈ T2}.

– Difference: T1 −̇T2 = {〈t1, ϕ′〉 | 〈t1, ϕ1〉 ∈ T1 and ϕ′ = ϕ1 ∧ ϕt1,T2
},

where ϕ
t1,T2

=
∧

〈t2,ϕ2〉∈T2

¬(ϕ2 ∧ (t1 = t2)).

– Cartesian product: T1 ×̇T2 = {〈t1 ◦ t2, ϕ1 ∧ ϕ2〉 | 〈t1, ϕ1〉 ∈ T1, 〈t2, ϕ2〉 ∈ T2},
where t1 ◦ t2 is the tuple obtained as the concatenation of t1 and t2.

The result of the conditional evaluation of a query Q over a conditional database C
is denoted as Q̇(C). Notice that Q̇(C) is a c-table. For a fixed queryQ and a conditional
database C, Q̇(C) can be evaluated in polynomial time in the size of C (see [11]).

W.l.o.g., in the rest of the paper we assume that every selection condition is a con-
junction of expressions of the form ($i = $j), ($i = c), ($i 6= $j), and ($i 6= c).

3 Approximation Algorithms

In this section, we show how to exploit conditional tables to compute a sound (but
possibly incomplete) set of certain answers with nulls. The basic idea is to rely on the
conditional evaluation of the relational algebra operators, in order to keep track of how
each tuple is derived during query evaluation, and then apply a strategy to evaluate
conditions, so that each tuple is eventually associated with a truth value. Tuples that are
associated with the condition true are certain answers with nulls.

We start by introducing an explicit conditional evaluation for intersection. In the
previous section, we recalled the conditional evaluation of different relational algebra
operators. Clearly, even if intersection was not reported, it can be expressed in terms of
the other operators. Let T1 and T2 be c-tables of arity n. Then,

T1 ∩̇T2 = {〈t1, ϕ′〉 | 〈t1, ϕ1〉 ∈ T1, 〈t2, ϕ2〉 ∈ T2, ϕ′ = ϕ1 ∧ ϕ2 ∧ (t1 = t2)}.

We slightly generalize c-tables to allow also unknown as a condition. Thus, from
now on, E is the set of all expressions that can be built using the standard logical connec-
tives with expressions, called atomic conditions, of the form (α = β), (α 6= β), true,
false, and unknown, where α, β ∈ Const ∪ Null. We will discuss different strategies
to “evaluate” conditions, that is, to reduce them to either true or false or unknown—as
shown in the following, tuples having condition true are certain answers with nulls.

We assume the following strict ordering false < unknown < true. The three-valued
evaluation of a condition ϕ ∈ E , denoted eval (ϕ), is defined inductively as follows:

– eval ((α = β)) =

true if α = β,

false if α 6= β and α, β ∈ Const,

unknown otherwise.

– eval ((α 6= β)) =

true if α 6= β and α, β ∈ Const,

false if α = β,

unknown otherwise.
– eval ((ϕ1 ∧ ϕ2)) = min{eval (ϕ1) , eval (ϕ2)}.
– eval ((ϕ1 ∨ ϕ2)) = max{eval (ϕ1) , eval (ϕ2)}.

– eval ((¬ϕ)) =

true if eval (ϕ) = false,

false if eval (ϕ) = true,

unknown otherwise.
– eval (v) = v for v ∈ {true, unknown, false}.

The basic idea of our first evaluation algorithm, which we call naive evaluation, is to
perform the three-valued evaluation of conditions after each relational algebra operator
is applied (that is, after its conditional evaluation). One interesting fact about the naive
evaluation is that it is equivalent to the evaluation algorithm of [14].

Given a c-tuple t = 〈t, ϕ〉, with a slight abuse of notation, we use eval (t) to denote
〈t, eval (ϕ)〉. Likewise, given a conditional table T , eval (T) denotes {eval (t) | t ∈ T}.

To define the naive evaluation, we first provide the following definitions:

Evaln(R) = eval (R)
Evaln(Q1 ∪Q2) = eval (Evaln(Q1) ∪̇ Evaln(Q2))
Evaln(Q1 ∩Q2) = eval (Evaln(Q1) ∩̇ Evaln(Q2))
Evaln(Q1 −Q2) = eval

(
Evaln(Q1) −̇ Evaln(Q2)

)
Evaln(Q1 ×Q2) = eval

(
Evaln(Q1) ×̇ Evaln(Q2)

)
Evaln(σθ(Q)) = eval (σ̇θ(Eval

n(Q)))
Evaln(πZ(Q)) = eval (π̇Z(Eval

n(Q)))

Given a relation R, we define the c-table R = {〈t, true〉 | t ∈ R}. Analogously,
given a database D, we define D as the conditional database obtained from D by re-
placing every relationR of it withR. Here the basic idea is to convert a databaseD into
a simple conditional database D where all conditions are true, so that D can be used as
the starting point for the conditional evaluation of queries.

Given a query Q and a database D, we use Evaln(Q,D) to denote the result of
evaluating Evaln(Q) over D. Finally, we define:

Evalnt (Q,D) = {t | 〈t, true〉 ∈ Evaln(Q,D)},
Evalnp(Q,D) = {t | 〈t, ϕ〉 ∈ Evaln(Q,D) and ϕ 6= false}.

Example 5. Consider the database D consisting of the two unary relations R = {〈a〉}
and S = {〈⊥1〉}. Consider also the query Q5 = R − S. The conditional database D
consist of the two c-tables R = {〈a, true〉} and S = {〈⊥1, true〉}. Then,

Evaln(Q5, D) = eval
(
eval

(
R
)
−̇ eval

(
S
))

= eval
(
R −̇S

)
= eval ({〈a, true ∧ ¬(true ∧ (a = ⊥1))〉}) = {〈a, unknown〉}.

Thus, Evalnt (Q5, D) = ∅ and Evalnp(Q5, D) = {〈a〉}. 2

The following theorem states that the naive evaluation is equivalent to the evalua-
tion algorithm of [14]. We point out that, in the following claim, D is a database (thus,
possibly containing nulls), but without conditions. However, the naive evaluation first
converts D into a conditional database D with all conditions being true, and then per-
forms the evaluation Evaln() over D, so that eventually tuples associated with true are
certain answers with nulls, and the remaining ones are possible answers.

Theorem 1. The naive evaluation is equivalent to the evaluation algorithm of [14].

Corollary 1. Evalnt (Q) has correctness guarantees.

Theorem 2. Evaln(Q,D) can be computed in polynomial time in the size of D, for
every query Q and database D.

The naive evaluation presented above is somehow limited, since it does not use
much the power of conditional tables, as shown in the following example.

Example 6. Consider the database D of Example 5 and the query Q6 = R−σ$1=b(S).
Clearly, cert(Q6, D) = {〈a〉}, as the selection returns either {〈b〉} or ∅ in every possible
world, and thus the result of the difference is {〈a〉} in every possible world. However,
the naive evaluation is not able to realize this aspect and behaves as follows:

Evaln(Q6, D) =
= eval

(
eval

(
R
)
−̇ eval

(
σ̇$1=b

(
eval

(
S
))))

= eval
(
{〈a, true〉} −̇ eval (σ̇$1=b ({〈⊥1, true〉}))

)
= eval

(
{〈a, true〉} −̇ eval ({〈⊥1, true ∧ (⊥1 = b)〉})

)
= eval

(
{〈a, true〉} −̇ {〈⊥1, unknown〉}

)
= eval ({〈a, true ∧ ¬(unknown ∧ (a = ⊥1))〉}) = {〈a, unknown〉}.

Thus, Evalnt (Q6, D) = ∅. In this case, the crucial point is that eval
(
σ̇$1=b

(
eval

(
S
)))

=
{〈⊥1, unknown〉}, and the fact that ⊥1 can only be equal to b gets lost. 2

The previous example suggests that equalities might be exploited to refine the eval-
uation of conditions, as illustrated in the following example.

Example 7. Consider again the database D of Example 5 and the query Q6 of Ex-
ample 6. By “propagating” equalities into conditions and tuples after each relational
algebra operator is conditionally evaluated, we get:

{〈a, true〉} −̇ σ̇$1=b({〈⊥1, true〉}) = {〈a, true〉} −̇ {〈⊥1, true ∧ (⊥1 = b)〉} =
{〈a, true〉} −̇ {〈b, unknown〉} = {〈a, true ∧ ¬(unknown ∧ (a = b))〉} = {〈a, true〉}.

Thus, we can conclude that 〈a〉 is a certain answer with nulls. Recall that cert(Q6, D) =
{〈a〉} and Evalnt (Q6, D) = ∅. 2

In the previous example, it is interesting to notice that the selection returns the c-
tuple 〈b, unknown〉, meaning that the only tuple that can be returned (in some cases) is
〈b〉, and thus providing more accurate information than the naive evaluation.

4 Conclusion

Certain answers are a principled manner to answer queries on incomplete databases.
Since their computation is a coNP-hard problem, recent research has focused on poly-
nomial time algorithms providing under-approximations. Leveraging conditional tables,
we have shown how new approximation algorithms can be developed.

We are currently working on more refined evaluation strategies which better exploit
the power of conditional tables, with the aim of computing more certain answers with
nulls. For instance, conditions might be rewritten into a more suitable form (e.g., con-
junctive normal form or disjunctive normal form [9, 10]) so as to allow better analyses.

References

1. Serge Abiteboul, Paris C. Kanellakis, and Gösta Grahne. On the representation and querying
of sets of possible worlds. Theoretical Computer Science, 78(1):158–187, 1991.

2. Marcelo Arenas, Pablo Barceló, Leonid Libkin, and Filip Murlak. Foundations of Data
Exchange. Cambridge University Press, 2014.

3. Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent query answers in
inconsistent databases. In Proc. Symposium on Principles of Database Systems (PODS),
pages 68–79, 1999.

4. Leopoldo E. Bertossi. Database Repairing and Consistent Query Answering. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2011.

5. Marco Calautti, Sergio Greco, Cristian Molinaro, and Irina Trubitsyna. Exploiting equality
generating dependencies in checking chase termination. PVLDB, 9(5):396–407, 2016.

6. Andrea Calı̀, Georg Gottlob, and Thomas Lukasiewicz. A general datalog-based framework
for tractable query answering over ontologies. Journal of Web Semantics, 14:57–83, 2012.

7. Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data exchange: se-
mantics and query answering. Theoretical Computer Science, 336(1):89–124, 2005.

8. Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. The LLUNATIC
data-cleaning framework. Proceedings of the VLDB Endowment, 6(9):625–636, 2013.

9. Georg Gottlob and Enrico Malizia. Achieving new upper bounds for the hypergraph duality
problem through logic. In Proc. Symposium on Logic in Computer Science (LICS), pages
43:1–43:10, 2014.

10. Georg Gottlob and Enrico Malizia. Achieving new upper bounds for the hypergraph duality
problem through logic. SIAM Journal on Computing, 2017.

11. Gösta Grahne. The Problem of Incomplete Information in Relational Databases, volume 554
of Lecture Notes in Computer Science. Springer, 1991.

12. Sergio Greco, Cristian Molinaro, and Francesca Spezzano. Incomplete Data and Data De-
pendencies in Relational Databases. Synthesis Lectures on Data Management. Morgan &
Claypool Publishers, 2012.

13. Sergio Greco, Francesca Spezzano, and Irina Trubitsyna. Checking chase termination:
Cyclicity analysis and rewriting techniques. IEEE Transactions on Knowledge and Data
Engineering, 27(3):621–635, 2015.

14. Paolo Guagliardo and Leonid Libkin. Making SQL queries correct on incomplete databases:
A feasibility study. In Proc. Symposium on Principles of Database Systems (PODS), pages
211–223, 2016.

15. Tomasz Imielinski and Witold Lipski Jr. Incomplete information in relational databases.
Journal of the ACM, 31(4):761–791, 1984.

16. Maurizio Lenzerini. Data integration: A theoretical perspective. In Proc. Symposium on
Principles of Database Systems (PODS), pages 233–246, 2002.

17. Leonid Libkin. Sql’s three-valued logic and certain answers. In Proc. International Confer-
ence on Database Theory (ICDT), pages 94–109, 2015.

18. Leonid Libkin. SQL’s three-valued logic and certain answers. ACM Transactions Database
Systems, 41(1):1, 2016.

19. Witold Lipski. On relational algebra with marked nulls. In Proc. Symposium on Principles
of Database Systems (PODS), pages 201–203, 1984.

