
Advanced Features of Hierarchical Component
Models

Pe[r Hnetynkal ancl ']bmaS BureS2

I Performance Engineer ing Lab, School of Computer Science and

Univers i ty Col lege Dubl in, I re land
petr . hnetynka@ucd. ie

Deptrrtrnent of Softrvare Engineering, Faculty of Nlathernatics and
Univers i t ,y , N' Ia lo.st , ransk6 n6mest, i 25, Praguc 1, 11800, Czec.h

bures@dsrg . n f f . cun i . cz

In lbrmat ics,

Physics. Char les

Reprrbl ic

Abstract. Using software components has become a widely used de-
velopment technique for building large enterprise systems. However in
practice, component applications are sti l l primarily built using simple
component models and advanced component models offering valuable
features like component nesting, multiple communication styles, behav-
ior val idat ion, etc. are omit ted (bV industry in part icular) . Based on our
experience, such an omitting is mainly caused due to usually unbalanced
semantics of these advanced features. In this paper, we present a "next-
generation" component model SOFA 2.0, which in particular aims at a
proper support of such advanced features.

Keywords: Component models, dynamic architectures, connectors, com-
ponent runtime environment.

Introduction

Cornponent-based development (CBD) [18] has become a commonly used tech-
nique for building not only large scale enterprise systems but also for virtually
any typc of sotware . Thanks to thc explicit specification of rrot orrly cornporrents'
provided services but also required ones) cornponents have brought easier reuse)
better integration, and rapider development compared to forrner development
techrriques.

There are tnany views and definitions of what a software colnpolteltt is br-rt a
general agreement is that a cornponent is a black-box software entity with well
defined interf'aces and behavior. 'I'he

set of all componenL f'eatures and rules fbr
component lifecycle, cornposition etc. is usually called cornponent 'model. Frorn
the compositiorr point of vierv, cornponent rnodels can be divided irrto two cat-
egories - f lat coltrponerrt nrodels and hierarclr ical conrponerrt nrodels. In corr-
trary to the flat ones, the hierarchicai cornponent uroclels allow fbr conrposite
componelrts (in addition to prirnitive conlponents), which means cornponents
hierarchically composed of other courponents. Thus, an application can be seerr
as a tree of nested components.

P. Hndtynka and T. Burei

Currently, there are a number of cornponent modeis each of thern trying to
provide an ideal solution for building applications. Componerrt models developed
and driven mainly by industry (e.g. EJB, CCN,I. and Koala) offer to developers
a stable and mature environment but they use just a f lat component model
(Koala uses a trierarchical one) and they do not provide advanced features like
rrrult iple cornrnunication styles, conrposit ion veri f icat ion, searnless distr ibution,
dynarnic architectures etc. On contrary, corrlponent models developed mainly in
the acadernic environtnent use irr airnost all cases hierarchical cornponent models
artd provide above mentioned advanced features. However academic cornponent
rnodels focus very often just on component design and they provide rro or very
Iirrrited runtirne environment, which is a major factor that hinders a cornmon
(and especially industrial) usage of hierarchical component rnodels. The rnain
reason for the lirrrited runtime support in the area of component models with
advanced features is in our view that it is quite hard to properly balance a
senrantics of all these advanced features.

The goal of the paper is to show strong and weak points of contemporary
used component models and therr to present the SOFA 2.0 14) component model
that supports hierarchical componerlts and a number of advanced features. while
it also provides a stable runtime environrnent, which serves for executine of
component appl icat ions.

Current component models

Irr this section, we discuss and compare representatives of common contemporary
componellt models with respect to their supported features and implementa-
tions. In particular, we focus on support for describing architectures, possibilitv
of dynamic architectures, support of advlanced features like behavior description,
multiple cornmunication styies via connectors, etc. (see [a] for detailed explana-
tion of these particular features and the problerns related to them), and arr
existence of runtime support for cornponents. We discuss Darwin, Wright, and
ACIVIE component modeis, which although already rather olcl had a strong in-
f lucncc on cornportcnt utodels developcd later. Furthcr, we prescnt CC\I, EJB.
and Koala as the representatives of the industrial models, and we also devote
attention to several representatives of academic component models, namely Flac-
tal, Arch.Iava, and SOF]\. At t .he end ol ' the section, we brief ly rel 'er t ,o several
non-standard component rnodels

As it has been mentioned above, Darwin [12] is a classical corrrponerrt rnodel
that influenced many later component models. It uses a hierarchical component
tnodels without connectors. Darwin allows expressing dynamic changes of archi-
tectures using lazy and direct dynamic irtstant'iat'ion,. The lazy dynamic instanti-
ation ailows for deferred instantion of components described in the architecture,
while the direct dynarnic instantiation allows for arbitrary changes. The archi-
tecture changes introduced by the direct dynamic instantiation are not captured
in the architecture description and thus they are completely uncontrollable. As

Advanced Features of Hierarchical Component Models

Darwin is just an architecture description language (ADL), it does not provide
any runtime environment.

Another classical ADL without a runtime environment is Wright [2]. It also
uses hierarchical component model but with connectors among components. Be-
havior of both cornponents and connectors is described using CSP-like notation.
Wright does not allow any dynamic changes of an architecture. As it supports
connectors, it can use any communication style.

ACIVIE [7] is an ADL intended to serve as a common represenrarion for ar-
chitecture descriptions. It uses a hierarchical component model with connectors.
Both components and connectors can have associated properties (for describing
auxiliary information) and design constraints, which mainly serve for describing
dynamic changes of an architecture. The language for the design constraints is
based on first order predicate logic.

Enterprise Java Beans (EJB) component model [6] developed by Sun NIi-
crosystems uses just a flat component model. Even more) it has quite a limited
support for describing requirements of components and does not provide any
additional features. On the other hand, it provides a stable and mature runtime
environmettt and ib is used in many enterprise applications. As it rses a flat
component model, EJB does not have any problems with dynamic adding and
removing components. Flom communication styles, it supports method invoca-
tion and sending messages.

OMG CORBA Component Model (CCM) is quite similar to EJB but it allows
for explicit description of component requirements. FYom communication styles,
it supports synchronous and asynchronous method invocation. Compared to
EJB, it is multiplatform and independent of a particular programming language.

Koala [14] has been created by Philips as a component model for developing
embedded software (for TVs, set-top-boxes, etc.). It uses a hierarchical com-
ponent model heavily inspired by Darwin. Primitive components in Koala are
implemented as a set of C functions. Koala strongly focuses on component de-
sign and optimizations; the Koala compiler (a tool which from ADL generates
C header files fbr implementation) allows removing unused components based
on components' configuration properties and further architecture optimizations.
The runtime possibilities are however quite limited (as the model is targeted to
an embedded environment).

Fractal [3] is a general purpose component model. It uses a hierarchical com-
ponent model without connectors. Connectors can be simulated using "normal"
colnponents (the Fractal specification even instructs to do so), however this
results into rather unclean and incomprehensible architectures mixing different
levels of abstraction. Flactal separates components functional and non-functional
(control) parts. The non-functional part is managed using controllers, which are
from the architectonic view provided interfaces. Fbactal also introduces the con-
cept of shared components, i.e. a single subcomponent instance shared by several
composite colnponents. Such an approach easily allows for runtime changes of an
architecture, but it breaks a component encapsulation hierarchy and can result
in clumsy and uncontrollable architectures. By itself, Ftactal is iust a specifica-

6 P. Hndtynka and T. Burei

tion defining a set of colnponent f'eatures and standard interfaces, and it has a
number of implementations.

Julia is a Java-based reference implementation of Flactal, which allows com-
ponent programming in Java. Components can be created either directly via
Julia API or using Flactal ADL. In addition to design time, components also
exist and can be referenced at runtime. For implementation of control parts of
components, Julia uses so called m'irins, which are Java classes that are woven
with the original components' classes using bytecode manipulation. The experi-
ence however shows that Julia's approach the component control parts is poorly
manageable and hard to extend and debug.

AOkell [17] is another F]actal implementation. It is similar to Julia but it
has an elaborate mechanism for building control parts of components based on
aspect-oriented programming, thus it addresses several issues Julia has in this
context.

The SOFA component model [15] is like F]actal a general purpose compo-
nent model. It also uses a hierarchical component model but with connectors
(and therefore with multiple communications styles). In addition, these connec-
tors allow for transparently distributed applications. Components' behavior can
be described using behavior protocol and these can be subsequently used to
verify component composition and communication. For describing components
and architectures, SOFA uses its own ADL. Similarly to Flactal, SOFA compo-
nents also exist and may be instantiated at runtime. The weak points of SOFA
comprise no support for dynamic changes of an architecture (it just supports a
dynamic update of a single component), not clearly separated and non-extensible
control part of components, and a limited set communication styles.

Both SOFA and all implementations of Flactal create a component platform
over the Java platform; in fact they are Java libraries. At runtime, instances
of components exist but they are mapped to a set of Java classes, The Arch-
Java [1] component system goes another way. It introduces components as a new
construct directly into the Java language. Such an approach should prevent vio-
lations of the architecture at runtime. However, neither in SOFA nor in FYactal
implementations, component developers can diverge from an architecture at run-
time. Moreover, as components in SOFA and Flactal are implemented in pure
Java, they can be much more easily integrated with other legacy systems.

In addition to the component rnodels presented so far, there also exist compo-
nent models, which try to capture and describe architectures in a rather formal
way. For example CHAM [tL] or system based on graph rewriting [f9], both
targeting description of dynamic architectures. But these systems are very corl-
plicated (even for simple architectures) and they do not provide any runtime
environment.

SOFA 2.0

As described above, currently there
support for describing architecture

are either component systems with strong
and no or almost no runtime support or

Advanced Features of Hierarchical Component Models

systems with a stable and functional runtime environment but rather poor pos-
sibilities for designing components. In the middle, there are system like SOFA
and the Flactal implementations, which provide both but still they have obsta-
cles that hinder from common usage. SOFA 2.0 which is a next generation of
tire original SOFA tries address these obstacles and issues.

SOFA 2.0 has inherited a hierarchical component modei with connectors and
most of other features fiom its ancestor. The main differences against the original
SOFA version are meta-model-based design of components, support of dynamic
architeclure reconfigurations, support of any communication style, and clearly
separated and extensible control parts of components.

SOFA 2.0 is defined using a meta-model. In contrast to ADl-based defini-
tion used in the original SOFA, such an approach has many advantages like
automated generation of a repository with standardized interface, standardized
XN{L-based interchange format, support for automated generation of models'
editors, etc. (see [8] tbr details). The meta-model defines all f'eatures of the com-
ponent model (in detail described in []) and is employed in generation of a
repository, which stores component descriptions as well as component imple-
mentations. As a particular technology fbr defining meta-model and generating
repository we use EMF [5].

Components are described using fram,e and archi,tect'ure constructs. The
frarne defines a set of interfaces (services) provided and/or required by a com-
ponent. The architecture then defines an implementation of the fiame; for prim-
itive components the architecture is empty and for composite components it
defines subcomponents (again using frames or other architectures) and connec-
tions among them.

The support of dynamic architecture reconfigurations is realized via well-
defined reconfiguration patterns [9]. Currently, three reconfiguration parrerns
are provided: factory pattern, removal pattern, and service access pattern. As
their names suggest, in factory pattern a designated component serves as a
component factory. The removal pattern serves for destroying of a component
previously created, while the last pattern allows an access to external services
through utility i,nterfaces.

For speci$'ing component behavior formally, SOFA 2.0 uses behaui,or proto-
cols [16]. They can be used for verification of component composition during
designing an application architecture and also there is a possibility to check a
primitive corrrponent implementation classes versus protocols.

Tlre SOFA 2.0 runtime environment is called SOFAnode. It consists of the
repository and a set of deployment docks, each of thern can be located on a dif-
ferent computer. A deployment dock is a container for launching components. A
single application can spread over several docks; connectors among components
assure transparent distribution.

As it has been said above, the repository is generated from the meta-model
and stores both component descriptions and implementations. At development
tiute, developers store into it the component information and also reuse the in-
formation already stored there. The repository and in fact whole SOFA 2.0 allow

P. Hndnnka and T. Burei

versioning of courponents. The versioning model used irr SOFA 2.0 is the sarrre

as in lhe original SOFIA. 1b gr.rarantee integrity of rhe development of different
versions and the converrient developrnent, the repository sr-rpports clon'i:ng. At

the beginning of the developrnent, developers create a new clone of the reposi-

tory, which mirrors its content. Then they work with this cione and finally, they

nerge the clone with the original repository. In the clorred working copy, devel-

opers can create temporary inconsistencies but the cloning and merging perrnits

to rnerge just fully consistent repository. The repository also allows export and
irnport of already developed componerrts (e.g. developed by third part ies).

From the implementation point of view, a component is set of Java classes.
For primitive componerrts, developers have to provide implementation classes.
There are not any requirements on these classes, i.e. they do not have to imple-
mcnt/extend any SOM-specific interfaces/classcs. Instead, we use an annotation-
based approach where components' provisions, requirements, initializing meth-
ods, etc. are marked using annot,ations. Benefits of this approach are no depen-
dencies ori the underlying platform (a single irnplementation can be resused in

different component platfbrms) and implementation classes can be easily [ested
by tools like JUnit without starting the whole SOFAnode. As composite corn-
ponents are composed of other components, they do not have any direct impie-
rnentation and developers do not create any code for them.

Due to versioning, Java class nanre clashes can occur at runtime, i.e. a situa-
tion. when bwo different classes having the same name are to be loaded into the
virtual machine. To address this, SOFA 2.0 uses bytecode rnanipulation; after
compil ing componen[classes, the bytecode of the classes is modif ied and the
classes are renamed to have unique names. Irr detail, the approach is described
I N I 1 U I .

All bindings among components in SOFA 2.0 are realized via connectors,
which are first-ciass entities in charge of addressing the communica[ion logic.
Their use brings the transparent distr ibution, dif ferent cornmunication styles
(e.g. synchronous rnethod invocation, asynchronous message delivery, shared
mernory, streaming, etc.) and the possibility of non-functionai aspects (e.g. log-
ging, benchmarking, runtirne bchavior verification. security, etc.). A connector is
specif icd at design t ime as a binding (i .e. an hypcr-edge connccting severai com-
ponent interfaces) and as a conrmunication style and a set of properties associ-
a,ted with each component interface participating in the binding. In our approach,
rve use connectors not onl1, in design but also at runtime as well-defined code ar-
tif'acts.

'Ihe
transibion from the high-level design [ime specification to connector

code is realized by a connector generator, which can automatically generate the
connector irnplernentation based on design-time and deployment requirements.
We perform the generation of connectors only at deployment tirne, which is
when we have the cornplete information of the application to be launched (in-

cluding the distribution of particular components to deployment docks); thus,
we can choose the most appropriate middleware for addressing the distribution
and perforrn other potential optirnizations.

Advanced Features of Hierarchical Component Models

In SOFA 2.0, we have striven to bring out the control part of components and
make it easily extensible. The control part (or component controliers) deals with
the rnanagernertt logic of a component, whicir includes management of bindings,
i i fecycle, some sort of introspection, controi l ing the update, etc. In the exist ing
colnponent systems (excepb Fractal), this iogic is typical ly str ict ly defined by
the respective system and cannot be easily changed or extended. Inspired by
the Fractal component nrodel, we have introduced to SOFA 2.0 the concept of
expl ici t component control lers. There is a dedicated nricro-component model,
which allows defining an architecturc of thc control part, and the concept of
a control aspect, rvhich encapstr lated a set of micro-components and defines a
consistent exteusiorr of the control part. Thus) we are able to easi ly model, extend
or even replace the control part of a cornponent.

Conclusion and future work

In this paper, we have presented a short overview of contemporary component
models and pointed out their main limitations with respect to advanced compo-
nent features (such as component nesting and rnodeling, possibility of dynarnic
architectures, description of component behavior, connectors, multiple commu-
nication styles, extensible component corrtrol functionality) and the existence
and maturitl' of a runtime environment. Then, we have described a new compo-
nent model SOFA 2.0 which aims at addressing these limitations. It allows for all
the mentioned advanced features and provides a balanced support for them at
design-time as weil as at development-, deployment- and run-time. At present,
SOFA 2.0 has been formalized using meta-models and also an implementation
of its runtirne is available. Tire development toois are work in progress.

This work was partially supported by the Grant Agenc'y of the Czech Republic
'project 201/06/0770. The support of the Info'rrnat'ics Commerci,al'isat'ion i,ntt'ia-
t'i 'ue of Enterprise lreland i,s gratefully acknowledged.

References

1. Aldr ich, J. , Chaunbers, C. , Notk in, D. : ArchJava: Connect ing Software Archi tecture
to Implementat ion, Proceedings of ICSE 2002, Or lando, USA, IVIay 2002

2. Al len. R. J. : A Formal Approach to Sof tware Archi tecture, Ph.D. Thesis, School
of Computer Science, Carnegie lVlellon University, ir,{ay 1997

3. Brunetotr , E. , Coupaye, T. , Leclerce, NI . , Quema, V. , Stefani , J . -8. : The Fractal
Component IVIodel and Its Support in Java, Softrvare Practice and Experience, Spe-
cia l i .ssuc on Expcr icnccs wi t ,h Auto-adapt, ive and Rcconf igurablc Systems, 36(11-
1 2) , 2 0 0 6

4. Bures, T. , Hnetynka, P. , Plasi l , F. : SoFA 2.0: Balancing Advanced Features in a
Hierarchical Component IVIodel , Proceedings of StrRA 2006, Seatt le, USA, IEEE
CS, Aug 2006

5. Eclipse Ivlodeling Framwork, http://www.eclipse.org/ emf /
6. Eut ,crpr isc Java Bcans spcci f icat ion, vers ion 2.1. Sun \ l icrosystcms, Nov 2003

10 P. Hndtynka and T. Burei

7. Garlan, D.; Monroe, R. T.; wi le, D.: Acme: Architectural Descript ion of
Component-Based Systems, In Foundations of Component-Based Systems, Cam-
bridge University Press, 2000

8. Hnetynh, P., Pise, M.: Hand-written vs. IVIOF-based Metadata Repositories: The
SOFA Experience, Proceeding of ECBS 2004, Brno, Czech Republic, NIay 2004

9. Hnetynka, P., Plasil, F.: f)ynamic Rcconfiguration and Access to Services in Hier-
archical Component lVlodels, Proceedings of CBSE 2006, Vasteras, Swed.en, LNCS
4063, Jun 2006

10. Hnetynka, P., Tuma, P.: Fighting Class Name Clashes in Java Component Systems,
Proceedings of JMLC 2003, Klagenfurt, Austr ia, Aug 2003

11. Inverardi, P.; Wolf, A.L.: Formal Specificat,ion and Analysis of Software Archi-
tectures Using the Chemical Abstract lVlachine lvlodel. Transactions on Software
Engineering, vol. 21, no. 4, Apr 1gg5

12. Ivlagee, J.; Kramer, J.: Dynamic structure in software architectures, Proceedings
of FSE'4, San Francisco, USA, Oct 1996

13. olvlG: coRBA Components, v 3.0, ON,IG document formalf 02-06-65, Jun 2002
14. van ommering, R., van der Linden, F., Kramer, J., ivlagee, J., The Koala compo-

nent IVIodel for Consumer Electronics Software, In IEEE Computer, Vol. 33, No.
3, pp. 78-85, NIar 2000

15. Plasi l , F., Balek, D., Janecek, R.: SOFA/DCUp: Architecture for Component Trad-
ing and Dynamic Updating, Proceedings of ICCDS'98, Annapolis, lvlaryland, USA,
IEEE CS Press, May 1998

16. Plasil, F., Visnovsky, S.: Behavior Protocols for Software Components, IEEtr
Transactions on Software Engineering, vol. 28, no. 11, Nov 2002

17. Seinturier, L., Pessemier, N., Duchietr, L., Coupaye, T.: A Component lvlodel En-
gineered with components and Aspects, OBSE'06, LNCS 4063, Jun 2006

18. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd
edition, Addison-Wesley, Jan 2002

19' Wermelinger, IvI.; Fiadeiro, J. L.: A graph transformation approach to software
architecture reconfiguration, Science of Computer Programming, Volunre 44, Issue
2, Aug2002

