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Abstract
This paper describes the WLV-RIT entry to the Hate Speech and Offensive Content Identification in
Indo-European Languages (HASOC) shared task 2020. The HASOC 2020 organizers provided partic-
ipants with annotated datasets containing social media posts of code-mixed in Dravidian languages
(Malayalam-English and Tamil-English). We participated in task 1: Offensive comment identification in
Code-mixed Malayalam Youtube comments. In our methodology, we take advantage of available English
data by applying cross-lingual contextual word embeddings and transfer learning to make predictions
to Malayalam data. We further improve the results using various fine tuning strategies. Our system
achieved 0.89 weighted average F1 score for the test set and it ranked 5𝑡ℎ place out of 12 participants.
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1. Introduction

Offensive content is pervasive in social media putting users of various platforms at risk [1].
The pervasiveness of such content motivated the development of several systems capable of
identifying offensive posts in a number of languages [2, 3]. Once identified, these posts can be
then set aside for human moderation or deleted from online platforms mitigating risks to their
users [4].

Recent studies have addressed many types of offensive content such as online abuse [5, 6],
aggression [7], cyberbullying [8, 9], and hate speech [10, 11]. International workshops and
competitions such as HatEval 2019 [12], OffensEval 2019 and 2020 [13, 14], co-located with
SemEval, have been organized in the last two years attracting a large number of participants.
Most high performing system in these competitions used neural networks and contextual word
embeddings such as BERT [15].

In this paper we describe the WLV-RIT entry to the the HASOC 2020 shared task which
featured Malayalam-English code-switched data. Building on the experience of recent high
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performing models submitted to the OffensEval competitions, we use a transformer-based ar-
chitecture described in detail in Section 3. The HASOC 2020 code-switching dataset is a partic-
ularly challenging one for state-of-the-art offensive language detection systems and we make
use of transfer learning techniques that have been recently applied to project predictions from
English to resource-poorer languages with great success [16].

2. Task description and Datasets

The goal of this task is to identify the offensive language of the code-mixed dateset of com-
ments/posts in Dravidian Languages (Tamil-English and Malayalam-English) collected from
social media. Each comment/post is annotated with an offensive language label at the com-
ment/post level. The dataset has been collected from YouTube comments [17]. We participated
in task 1 which is a message-level label classification task; given a YouTube comment in Code-
mixed (Mixture of Native and Roman Script) Tamil and Malayalam, systems have to classify
whether a post is offensive or not-offensive. To the best of our knowledge, this is the first
dataset to be released for offensive language detection in Dravidian Code-Mixed text [17].

In addition to the dataset provided by the organisers we also used an English Offensive
Language Identification Dataset (OLID) [18] used in the SemEval-2019 Task 6 (OffensEval) [13]
for transfer learning experiments which are describing in Section 3. OLID is arguably one of
the most popular offensive language datasets. It contains manually annotated tweets with the
following three-level taxonomy and labels:

A: Offensive language identification - offensive vs. non-offensive;

B: Categorization of offensive language - targeted insult or thread vs. untargeted profanity;

C: Offensive language target identification - individual vs. group vs. other.

We adopted the transfer learning strategy similar to previous recent work [16]. We believe that
the flexibility provided by the hierarchical annotation model of OLID allows us to map OLID
level A (offensive vs. non-offensive ) to labels in the HASOC Malayalam-English dataset.

3. Methods

The methodology applied in this work is divided in two parts. Subsection 3.1 describes tradi-
tional machine learning applied to this task and in Subsection 3.2 we describe the transformer
models used.

The motivation behind our methodology is the recent success that the transformers had in
wide range of NLP tasks like language generation [15], sequence classification [19, 20], word
similarity [21], named entity recognition [22], question and answering [23] etc. The main idea
of the methodology is that we train a classification model with several transformer models in-
order to identify offensive texts. However, the transformer models are known to be resource
intensive requiring fairly large datasets [15], therefore, we also experimented with several tra-
ditional machine learning models



3.1. Traditional Machine Learning Methods

In the first part of the methodology, we used traditional machine learning models. We experi-
mented with three models; Multinomial Naive Bayes [24], Support Vector Machines [25], and
Random Forest [26]. The models take an input vector created using Bag-of-words and outputs
a label, either offensive or non-offensive. The models for Multinomial Naive Bayes, SVM and
Random Forest were implemented using the Scikit-learn [27].

Data Preprocessing We performed three preprocessing techniques; removing punctuations,
removing emojis and lemmatising the English words. This was done with the use of the NLTK
(Natural Language Toolkit) library [28] in Python.

Hyper Parameter Optimisation Optimisation of hyper parameters was performed on SVM
and random forest only. For SVM, the hyper parameters fine-tuned were alpha, random state
and max iteration, where alpha represents regularisation, random state is used for shuffling
of the data and max iteration denotes number of passes through the training data which is
also known as epochs. Optimal values achieved were alpha=0.001, random state=5, max iter-
ation=15. For random forest, only one hyper parameter was used which is n-estimator that
denotes number of decision trees created. Optimal value achieved for number of trees was 500.

3.2. Transformers Models

As the second part of the methodology, we used Transformer models. Transformer architec-
tures have been trained on general tasks like language modelling and then can be fine-tuned
for classification tasks [29]. They take an input of a sequence and outputs the representation
of the sequence. The sequence has one or two segments that the first token of the sequence is
always [CLS] which contains the special classification embedding and another special token
[SEP] is used for separating segments. For text classification tasks, Transformer models take
the final hidden state h of the first token [CLS] as the representation of the whole sequence
[29]. A simple softmax classifier is added to the top of the transformer model to predict the
probability of a class as shown in Equation 1 where W is the task-specific parameter matrix.
The architecture diagram of the classification is shown in Figure 1

𝑝(𝑐|h) = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(𝑊h) (1)

Transformers We experimented two pretrained transformer models; BERT [15] and XLM-
ROBERTA [30] We used the HuggingFace’s implementation of the transformer models [31]
and the pre-trained models available in the HuggingFace model repository.1 These models
were used mainly considering their support to Malayalam language. For BERT we used the
BERT multilingual model (BERT-M) and for XLM-ROBERTA (XLM-R) we used the XLM-R-
Large model. Both models support 104 languages including Malayalam. The interesting fact
about XLM-R is that it is very compatible in monolingual benchmarks while achieving best
results in cross-lingual benchmarks at the same time [30].

1HuggingFace model repository - https://huggingface.co/models

https://huggingface.co/models


Figure 1: Transformer Text Classification Architecture

Transfer Learning The main idea of the transfer learning strategy is that we train a classi-
fication model on a resource rich language, typically English, using a transformer model and
perform transfer learning on a less resource language. We trained the classification model on
the first level of OLID [32] and then we save the weights of the transformer model as well as
the softmax layer. We use this saved weights from English to initialise the weights when we are
training the classification model for Malayalam. This strategy has improved the performance
of different languages with less resources for offensive language identification such as Hindi,
Bengali etc [16]. Therefore we experimented with this strategy to see whether it improves the
results for Malayalam too. According to the recent research, cross-lingual transformers have
slight edge when using this transfer-learning strategy [16].

Data Preprocessing The data preprocessing for this task was kept fairly minimal to make it
portable for other languages too. We only followed one data preprocessing technique; convert-
ing emojis to text. Emojis are found to play a key role in expressing emotions in the context of
social media [33]. But, we cannot assure the existence of embeddings for emojis in pretrained
models. Therefore as a preprocessing step, we converted emojis to text. For this conversion
we used the Python libraries demoji 2 and emoji 3. demoji returns a normal descriptive text
and emoji returns a specifically formatted text. For an example, the conversion of , is ‘slightly
smiling face’ using demoji and ‘:slightly_smiling_face:’ using emoji. Considering that demoji
returns a normal text, we used demoji to convert the emojis to text.

Fine-tuning To improve the models, we experimented different fine-tuning strategies: ma-
jority class self-ensemble, average self-ensemble, language modelling, which are described be-
low. These fine tuning strategies have shown promising results in recent shared tasks [34].

2demoji repository - https://github.com/bsolomon1124/demojis
3emoji repository - https://github.com/carpedm20/emoji

https://github.com/bsolomon1124/demojis
https://github.com/carpedm20/emoji


1. Self-Ensemble (SE) - Self-ensemble is found as a technique which results better perfor-
mance than the performance of a single model [35]. In this approach, same model ar-
chitecture is trained or fine-tuned with different random seeds or train-validation splits.
Then the output of each model is aggregated to generate the final results. As the aggre-
gation methods, we analysed majority-class and average in this research. The number
of models used with self-ensemble will be denoted by 𝑁 .

• Majority-class SE (MSE) - As the majority class, we computed the mode of the classes
predicted by each model. Given a data instance, following the softmax layer, a
model predicts probabilities for each class and the class with highest probability is
taken as the model predicted class.

• Average SE (ASE) - In average SE, final probability of class 𝑐 is calculated as the
average of probabilities predicted by each model as in Equation 2 where h is the
final hidden state of the [CLS] token. Then the class with highest probability is
selected as the final class.

𝑝𝐴𝑆𝐸(𝑐|ℎ) =

∑
𝑁

𝑘=1
𝑝𝑘(𝑐|ℎ)

𝑁

(2)

2. LanguageModelling (LM) - As language modelling, we retrained the transformer model
on task dataset before fine-tuning it for the downstream task; text classification. This
training is took place according with the model’s initial trained objective. Following this
technique model understanding on the task data can be improved.

Implementation We used a Nvidia Tesla K80 GPU to train the models. We mainly fine tuned
the learning rate and number of epochs of the classification model manually to obtain the best
results for the validation set. We obtained 1𝑒

−
5 as the best value for learning rate and 3 as

the best value for number of epochs for all the languages. Training for English language took
around 1 hour while training for Malayalam took around 30 minutes.

4. Results and Evaluation

In this section, we report the experiments we conducted and their results. As informed by the
task organisers, we used Weighted Average F1 score to measure the model performance. We
also report Precision, Recall and F1 score for each class label as well the Macro F1 score in the
results tables. Results in Tables 1 - 5 are computed on validation dataset. Finally, in Section 4.1
we report the results provided by organisers to our models, for the test set.

Table 1 shows the results we gained with traditional machine learning algorithms. Out of
the three traditional machine learning algorithms Random Forest performed best, providing us
with 0.93 weighted average F1 score. In the experiments we did with transformers, initially we
focused on the impact of transfer learning when used with different transformer models and
the obtained results are summarised in Table 2. According to the results XLM-R with transfer
learning outperformed other models. Also we could notice that transfer learning improved
both models; BERT and XLM-R.



Non Hate Offensive Hate Offensive Weighted Average
Model P R F1 P R F1 P R F1 F1 Macro
Random Forest 0.93 0.99 0.96 0.92 0.68 0.78 0.93 0.93 0.93 0.87
Linear SVM 0.93 0.98 0.96 0.88 0.68 0.77 0.92 0.93 0.92 0.86
Mult. Naive Bayes 0.90 0.98 0.94 0.88 0.53 0.66 0.90 0.90 0.89 0.80

Table 1
Results for offensive language detection with traditional ML models. For each model, Precision (P),
Recall (R), and F1 are reported on all classes, and weighted averages. Macro-F1 is also listed.

Non Hate Offensive Hate Offensive Weighted Average
Model P R F1 P R F1 P R F1 F1 Macro
XLM-R (TL) 0.91 0.96 0.94 0.77 0.59 0.67 0.89 0.89 0.89 0.80
BERT-m (TL) 0.90 0.95 0.93 0.76 0.57 0.65 0.88 0.88 0.87 0.78
XLM-R 0.89 0.98 0.93 0.79 0.40 0.53 0.88 0.88 0.86 0.74
BERT-m 0.88 0.97 0.92 0.78 0.38 0.51 0.86 0.87 0.85 0.72

Table 2
Results for offensive language detection with default settings on Transformers. For each model, Preci-
sion (P), Recall (R), and F1 are reported on all classes, and weighted averages. Macro-F1 is also listed.
TL indicated the Transfer Learning experiments

The self ensemble methods were experimented using all the transformer models and obtained
results are summarised in Tables 3 and 4. In most experiments, ASE has given a higher F1 than
MSE and it improved the results over the default settings. With that fine tuning strategy too
XLM-R with transfer learning outperformed all the other models.

The language modeling fine tuning strategy were experimented using all the transformer
models and obtained results are summarised in Table 5. These experimented were done on top
of ASE fine tuning strategy since it provided better results than the default settings. Results
show that language modeling clearly improved the results. In fact, the best result from our
experiments were shown when XLM-R model with transfer learning fine tuned with ASE and
language modeling.

Non Hate Offensive Hate Offensive Weighted Average
Model P R F1 P R F1 P R F1 F1 Macro
XLM-R (TL) 0.91 0.96 0.94 0.77 0.59 0.67 0.89 0.89 0.89 0.80
BERT-m (TL) 0.90 0.95 0.93 0.76 0.57 0.65 0.88 0.88 0.87 0.78
XLM-R 0.89 0.98 0.93 0.79 0.42 0.55 0.88 0.88 0.86 0.76
BERT-m 0.88 0.97 0.92 0.78 0.40 0.53 0.87 0.87 0.85 0.74

Table 3
Results for offensive language detection with MSE on Transformers. For each model, Precision (P), Re-
call (R), and F1 are reported on all classes, and weighted averages. Macro-F1 is also listed. TL indicated
the Transfer Learning experiments



Non Hate Offensive Hate Offensive Weighted Average
Model P R F1 P R F1 P R F1 F1 Macro
XLM-R (TL) 0.92 0.97 0.95 0.78 0.60 0.68 0.90 0.90 0.90 0.81
BERT-m (TL) 0.91 0.96 0.94 0.77 0.58 0.66 0.89 0.89 0.88 0.79
XLM-R 0.90 0.99 0.94 0.80 0.43 0.56 0.89 0.89 0.87 0.77
BERT-m 0.89 0.98 0.93 0.79 0.41 0.54 0.88 0.88 0.86 0.75

Table 4
Results for offensive language detection with ASE on Transformers. For each model, Precision (P), Recall
(R), and F1 are reported on all classes, and weighted averages. Macro-F1 is also listed. TL indicated the
Transfer Learning experiments

Non Hate Offensive Hate Offensive Weighted Average
Model P R F1 P R F1 P R F1 F1 Macro
XLM-R (TL) 0.94 0.99 0.97 0.82 0.63 0.69 0.93 0.93 0.93 0.85
BERT-m (TL) 0.92 0.97 0.95 0.78 0.59 0.67 0.91 0.91 0.91 0.82
XLM-R 0.91 0.99 0.95 0.81 0.44 0.56 0.90 0.90 0.88 0.78
BERT-m 0.890 0.99 0.94 0.80 0.42 0.55 0.89 0.89 0.87 0.76

Table 5
Results for offensive language detection with ASE and Language Modeling on Transformers. For each
model, Precision (P), Recall (R), and F1 are reported on all classes, and weighted averages. Macro-F1 is
also listed. TL indicated the Transfer Learning experiments

4.1. Submission Results

Considering the evaluation results on the validation set, we selected the fine-tuned XLM-R(TL)
model with ASE + language modeling as our official submission to the HASOC task. According
to the results provided by the organisers, our best model has scored 0.89 weighted average F1
score on the test set and ranked 5𝑡ℎ out of 12 participants.

5. Analysis

In addition to the experiments described in this paper, we carried out a qualitative analysis on
the dataset to find interesting patterns and observations. In the training data out of 3,200 tweets
only 567 were labelled offensive and the remaining 2,633 were labelled as not-offensive. The
use of English words were minimal although there are many tweets which are in Malayalam
language but written in Roman script. When analysing the tweets labelled as offensive, we
observed that there are many tweets in the dataset which are actually not-offensive but labelled
as offensive. Free English translations of some examples include:

(1) Spent 4 years proclaiming to be a Royal Mech.
(2) There are 25k dislikes from Ikka (Mammooty) fans, you are free to unlike and cry.

(3) Nice, looks like a TV drama series from SuryaTV (a Malayalam channel).

(4) Have you no shame defaming a reputed hospital?

We observed that between 20% and 25% of the tweets which are labelled as offensive are similar
to the example shown above which has certainly impacted the performance of the models.



6. Conclusion

In this paper we have presented the system submitted by the WLV-RIT team to the HASOC
2020 - Offensive Language Identification - Dravidian Code Mix Task 1 at FIRE 2020. Follow-
ing a recent study [16], we have shown that the XLM-R with transfer learning is the most
successful transformer model from several transformer models we experimented. It should be
noted that the traditional machine learning models comes very close to the performance of
the transformer models. We have shown that the best traditional machine learning algorithm
we experimented; Random Forest outperforms the majority of our transformer model based
experiments. This can be due to properties of the dataset or due to the fact that a low-resource
language like Malayalam is under represented in multilingual pre-trained models. With several
fine tuning strategies, XLM-R with transfer learning provides the best result for the validation
set. Finally, our approach achieved 5𝑡ℎ place in the leaderboard for the test set.
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