
Big DataBase Management System
Alberto Abelló1, Sergi Nadal1

1Universitat Politècnica de Catalunya-BarcelonaTech

Abstract
A Big Data system is a tiny fraction of analytical code surrounded by a lot of “plumbing” devoted to manage the generated
models and the associated data. Hence, we can consider that plumbing to be mimicking a DBMS, which is indeed a complex
system that actually has to serve different purposes and hence provide multiple and independent functionalities. Thus, it
can neither be studied nor built monolithically as an atomic unit. Oppositely, there are different software inter-dependent
components that interact in different ways to achieve the global purpose. Similarly to DBMS, in a Big Data system, we have
to understand among other issues how our system is going to collect data; how these are going to be used; where they are
going to be stored; how they are going to be related to the corresponding metadata; if we are going to use any kind of master
data, where these will come from and how they will be integrated; how are the data going to be processed; how replicas are
going to be managed and their consistency guaranteed; etc. In this paper, we briefly discuss the difficulties to build such
system, paying special attention to how metadata can help storage and processing.

Keywords
Big Data architecture, DBMS

1. Functionalities of a DBMS
In order to study the functional components required
to manage data, it is essential to first understand the re-
quired functionalities. A database management system
(DBMS) is a software system that provides the function-
alities to manage large, shared and persistent data collec-
tions, while ensuring reliability and privacy. Out of the
many functionalities provided by a DBMS, we highlight:
Storage, Modeling, Ingestion, and Querying/Fetching.

Nowadays, a new kind of data-intensive systems that
gather and analyse all kinds of data has emerged bring-
ing new challenges for data management and analytics.
These are today referred as Big Data systems. Thus, we
can see a Big Data Management System as a DBMS that
has to provide the previously highlighted functionali-
ties adapted to the new scenarios posed by Big Data [1].
The development of a cohesive and integrated Big Data
system is, however, a challenging task that requires to
understand how the required functionalities can be per-
formed by different, independent components. Hence, it
is crucial to understand and establish how they interact.

We highlight some of the challenges such new systems
face. On the one hand, the “Velocity” dimension of Big
Data identifies the need of managing and processing data
streams which are generated at a very large pace. Never-

Published in the Workshop Proceedings of the EDBT/ICDT 2022 Joint
Conference (March 29-April 1, 2022), Edinburgh, UK
" aabello@essi.upc.edu (A. Abelló); snadal@essi.upc.edu
(S. Nadal)
~ https://www.essi.upc.edu/dtim/people/alberto (A. Abelló);
https://www.essi.upc.edu/dtim/people/snadal (S. Nadal)
� 0000-0002-3223-2186 (A. Abelló); 0000-0002-8565-952X
(S. Nadal)

© 2022 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

theless, this does not mean everything must be done in
real time. Indeed, some execution flows do not feel such
pressure and do not require such low latency. Hence, it is
the case that in many applications both batch and stream
processing have to coexist in the same architecture. This,
however, makes the architecture more complex in terms
of number of components, also hindering their commu-
nication and data sharing, as well as the consistency of
independent processing branches. On the other hand, the
“Variety” dimension refers to the complexity of providing
an on-demand integrated view over an heterogeneous
and evolving set of data sources such that it conceptual-
izes the domain at hand. An example of it is BigBench
[2], which defines a benchmark representative of real use
cases of Big Data. We can observe that the main differ-
ences with traditional data-intensive applications are (i)
the presence of external sources and (ii) the relevance of
non-structured data (i.e., not typed and not tabular, which
today represents the majority of data being generated).
It is clear, thus, that to make use of rapidly generated, ex-
ternal and non-structured information sources, we need
specific and specialized architectural components that
interact with many others to transform such complex
data into actionable knowledge.

2. Big Data Architectures
The previously identified challenges require a complete
reconsideration of classical DBMS architecture and com-
ponents that date back to the 70s. Yet, the approach so far
adopted by the data management community has been
that of developing components addressing each of the
required functionalities (i.e., Storage, Modeling, Inges-
tion, Processing, and Querying/Fetching) as efficiently

mailto:aabello@essi.upc.edu
mailto:snadal@essi.upc.edu
https://www.essi.upc.edu/dtim/people/alberto
https://www.essi.upc.edu/dtim/people/snadal
https://orcid.org/0000-0002-3223-2186
https://orcid.org/0000-0002-8565-952X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


as possible. Indeed, current technological stacks for the
management and processing of data-intensive tasks are
composed of independent components (commonly those
in the NOSQL family) that generally work in isolation and
are orchestrated together to map to what would be equiv-
alent to different functionalities of a DBMS. In complex
applications, where many of these tools need to interact,
it is definitely not wise to do it arbitrarily. Indeed, such
erroneous approach yields what is coined as a “pipeline
jungle” [3]. The alternative is, thus, to reconsider some
of the architectural patterns they implement.

2.1. New storage patterns
Big Data analysis is an exploratory task, thus integrating
and structuring the data a priori entails a large overhead.
Alternatively, the Data Lake approach promotes to main-
tain raw data as they are in the sources as a collection
of independent files. Then, once data scientists require
some of these data for a concrete purpose, it is when the
task of integrating, cleaning and structuring into the right
format and schema for the problem at hand is performed.
This referred as the “Load-first, Model-later” approach.

The risk with this approach is that files can be simply
massively accumulated without any order, resulting in
what is called a “Data Swamp”, where just finding the
relevant data would be a challenge. The solution for this
is creating an organization of files and semantically anno-
tate into a metadata catalog conceptualizing the domain
(e.g., implemented via graph-based formalisms). Thus, to
the already existing mappings in the catalog, we should
add links from each file to such graph containing the rel-
evant concepts for our business. In this way, users would
be able to perform guided searches over the metadata
instead of blindly navigating the files. If properly done,
a semantic approach can even facilitate automation of
integration and queries [4].

2.2. New processing patterns
Descriptive analytics study how the business performs
at different levels of granularity (e.g., regions, cities or
districts), and how it evolves over time. Timeliness of
data is usually not an issue for long term trends, and days
or even weeks are acceptable for the current data to be
processed and made ready for the analysis. Oppositely,
predictive analytics aim to foresee how a given entity
(e.g., customer) is going to behave in the near future.
Obviously, since the purpose of a prediction is to react
or at least be ready to take some action, data freshness
and response time is typically crucial in this case.

Consequently, since time requirements are contradic-
tory, we have to distinguish both precessing flows, giving
rise to what is known as 𝜆-Architecture. This, consists of
two execution branches fed from the same sources. One

focuses on batch processing, and the other on stream pro-
cessing. Nevertheless, maintaining such potentially re-
dundant flows generates some management risks. For the
prediction to be accurate, the new arriving tuples have
to go through the same transformation and preparation
tasks as the training data (otherwise, the validity of the
prediction would be compromised). The 𝜆-architecture
evolved into 𝜅-architecture, as a simplification with a
single execution engine (hence a single implementation
of the transformations).1 The batch processing is re-
placed by playing the data through the streaming system
quickly. If for any reason, we require different versions
of the transformations for different predictive models, we
can keep all of them in the same system and choose the
most appropriate one at every moment, independently
of whether it is for training or production.

3. Conclusion
The current problem in Big Data is not how to make a
more accurate predictive model, but how to manage the
data needed for its training. The difficulty is amplified
by having independent components that need to inter-
act without a solid backbone that removes the burden
of their connectivity from the shoulders of developers.
If we pay attention to either Velocity or Variety, we can
conclude that metadata is crucial for such backbone and
the governance of Big Data. However, current state of
the art has not reached the required level of maturity
to give the view of a single homogenous system coordi-
nated through those metadata instead of adhoc scripts
or specifically programmed APIs and connectors.

References
[1] P. Jovanovic, S. Nadal, O. Romero, A. Abelló, B. Bi-

lalli, Quarry: A user-centered big data integration
platform, Inf. Syst. Frontiers 23 (2021) 9–33.

[2] T. Rabl, M. Frank, M. Danisch, H. Jacobsen, B. Gowda,
The vision of bigbench 2.0, in: Proceedings of the 4th
Workshop on Data analytics in the Cloud (DanaC),
ACM, 2015, pp. 3:1–3:4.

[3] D. Sculley, G. Holt, D. Golovin, E. Davydov,
T. Phillips, D. Ebner, V. Chaudhary, M. Young, J.-
F. Crespo, D. Dennison, Hidden technical debt in
machine learning systems, in: Advances in Neural
Information Processing Systems, volume 28, Curran
Associates, Inc., 2015.

[4] S. Nadal, O. Romero, A. Abelló, P. Vassiliadis, S. Van-
summeren, An integration-oriented ontology to gov-
ern evolution in big data ecosystems, Inf. Syst. 79
(2019) 3–19.

1https://www.oreilly.com/radar/
questioning-the-lambda-architecture

https://www.oreilly.com/radar/questioning-the-lambda-architecture
https://www.oreilly.com/radar/questioning-the-lambda-architecture

	1 Functionalities of a DBMS
	2 Big Data Architectures
	2.1 New storage patterns
	2.2 New processing patterns

	3 Conclusion

