
ECDP: A Big Data Platform for the Smart Monitoring
of Local Energy Communities
(Application Paper)

Luca Gagliardelli1, Luca Zecchini1, Domenico Beneventano1, Giovanni Simonini1,
Sonia Bergamaschi1, Mirko Orsini2, Luca Magnotta2, Emma Mescoli2, Andrea Livaldi2,
Nicola Gessa3, Piero De Sabbata3, Gianluca D’Agosta3, Fabrizio Paolucci3 and Fabio Moretti3

1University of Modena and Reggio Emilia, Modena, Italy, {name.surname}@unimore.it
2DataRiver S.r.l., Modena, Italy, {name.surname}@datariver.it
3Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Bologna, Italy,
{name.surname}@enea.it

Abstract
In this paper we present the Energy Community Data Platform (ECDP), a middleware platform designed to support the
collection and the analysis of big data about the energy consumption inside local energy communities, with the aim of
encouraging a more conscious use of energy by the users. The big data platform, commissioned by ENEA, acquires data of
different nature (e.g., describing the measurement of the energy consumption and production, weather conditions, etc.) in a
heterogeneous format from multiple sources. We describe the architecture of ECDP, designed to support a Data Integration
Workflow and a Data Lake Workflow, conceived for different uses of the data, motivating our technological choices. Then, we
illustrate several dataflows reflecting real-world use cases, which highlight the advantages offered by the designed architecture
for different types of users. The main strengths of the presented big data platform are flexibility and scalability (guaranteed
by its modular architecture), which allow its applicability to any type of local energy community.

Keywords
Big Data Integration, Energy Communities, Big Data Platform

1. Introduction
The Energy Community Data Platform (ECDP), commis-
sioned by ENEA (the Italian National Agency for New
Technologies, Energy and Sustainable Economic Devel-
opment), is a middleware platform we designed to collect
and analyze big data about the energy consumption in-
side Local Energy Communities (LEC), with the aim of
encouraging a conscious use of energy by the users, at
home and in the workplace.
ECDP is designed for the acquisition of data from dif-

ferent dataflows in a heterogeneous format, the proper
management of the workflows to retrieve and store the
great amount of data acquired from different sources
and utilities (of public or private nature), and function-
alities of data integration, transformation, and cleaning,
required to make the data ready to run queries on it and
for its use in data analysis and visualization operations.

The design of the big data platform was driven by
several real-world use cases, which allowed to detect

Published in the Workshop Proceedings of the EDBT/ICDT 2022 Joint
Conference (March 29–April 1, 2022, Edinburgh, UK)
� 0000-0001-5977-1078 (L. Gagliardelli); 0000-0002-4856-0838
(L. Zecchini); 0000-0001-6616-1753 (D. Beneventano);
0000-0002-3466-509X (G. Simonini); 0000-0001-8087-6587
(S. Bergamaschi); 0000-0002-5087-9530 (M. Orsini)

© 2022 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

two main requirements to be satisfied: (i) it must allow
to preprocess the data in a batch and periodical way,
then to store it, making it available for data analysis
without having to repeat these operations every time;
(ii) it must integrate heterogeneous data acquired from
multiple sources with different characteristics. To com-
ply with the first requirement, ECDP exploits an efficient
data lake storage layer, namely Delta Lake [1]. Storing
the data in Delta Lake allows to mitigate the excessive
execution time needed to import large files or to im-
port data in bulk from database management systems.
For the second requirement, the architecture of the big
data platform is centered on MOMIS (Mediator EnvirOn-
ment for Multiple Information Sources), an open-source
data integration system [2, 3, 4] which adopts a seman-
tic approach to the integration of different data sources,
also making the acquisition of new sources easier. ECDP
was developed following the wrapper/mediator architec-
ture of MOMIS, which allows to aggregate information
from heterogeneous data sources (both structured and
semi-structured) and make it homogeneous, in a semi-
automatic way. Thus, it makes possible to obtain a single
unified source, without any redundancy or conflict in
data.

In Section 2, we describe the architecture of the big
data platform, motivating the structural choices and the
adopted technologies. The main strengths of the pro-

https://orcid.org/0000-0001-5977-1078
https://orcid.org/0000-0002-4856-0838
https://orcid.org/0000-0001-6616-1753
https://orcid.org/0000-0002-3466-509X
https://orcid.org/0000-0001-8087-6587
https://orcid.org/0000-0002-5087-9530
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Figure 1: Architecture of the Energy Community Data Platform (ECDP).

posed solution are flexibility and scalability. ECDP was
designed in a modular manner as a flexible and open
system, to ease future extensions for the implementa-
tion of new functionalities, different ways for connecting
to and retrieving data from devices or services, and the
integration with the other components of the software
architecture or software systems present inside the LEC.
These features allow an extremely wide range of applica-
tions for ECDP, making it suitable for any type of local
energy community.

The flexibility of ECDP is highlighted in Section 3,
where we illustrate its adaptability to several real-world
use cases that drove the design process, addressing dif-
ferent application areas. These use cases are related to
projects carried out by ENEA1, namely SelfUser2, aim-
ing at maximizing the collective self-consumption based
on renewable energy in a condominium (Section 3.2),
and PELL3, to optimize the energy consumption of pub-
lic lighting (Section 3.3). Moreover, also the European
project GECO4 about green energy communities was con-
sidered as a reference for the design of the architecture.

Contributions by the groups

The presented big data platform was designed and devel-
oped within the project “Smart Monitoring of a Local En-
ergy Community” (2020-2021), supervised by ENEA. The

1https://www.enea.it
2http://www.selfuser.it
3https://www.pell.enea.it
4https://www.gecocommunity.it

design of the platform was carried out by the Database
Research Group (DBGroup5) of the University of Mod-
ena and Reggio Emilia, leveraging its experience in big
data integration and analysis [5, 6, 7, 8, 9], jointly with
DataRiver6, which subsequently took care of its imple-
mentation. Both phases complied with the specifications
and the technical documentation provided by ENEA and
saw a continuous interaction with its project team.

2. The Energy Community Data
Platform (ECDP)

This section illustrates the architecture of the Energy
Community Data Platform (ECDP), represented in Fig-
ure 1, whose main characteristics and requirements were
presented in Section 1.

2.1. Data Sources
The three modules identified as "Data Sources" in Figure 1
reflect the existing scenario and the solutions adopted
by ENEA, and constitute the basis to build the big data
platform on.

Data sources are multiple and heterogeneous, and will
certainly increase in number and change over time. The
data about the functioning of the LEC can be static or
dynamic. Static data is collected once and stored in tables

5https://dbgroup.unimore.it
6https://www.datariver.it/en

https://www.enea.it
http://www.selfuser.it
https://www.pell.enea.it
https://www.gecocommunity.it
https://dbgroup.unimore.it
https://www.datariver.it/en


of a relational DBMS; it can be related to people (e.g., per-
sonal information), buildings (e.g., geopositioning or exte-
rior insulation), or apartments/offices (e.g., air condition-
ing). Dynamic data, which is collected by sensors (contin-
uously or at different intervals) or received from outside
the LEC (e.g., from energy providers), is mainly related
to the energy consumption, production, or accumulation.
In the considered use cases, for example, ECDP has to deal
with data about the energy consumption/production in
condominiums and single apartments, measured with a
granularity of one second and sent weekly in CSV format
as ZIP archives (i.e., condominium data) or measured with
a granularity of 15 minutes and sent continuously as CSV
files (i.e., smart meter data), but also meteorological data
collected by weather stations with a granularity of one
minute and stored as JSON files, and many other types
of data, such as information about the presence of the
personnel in the offices (in TXT format).

Furthermore, the considered projects also present
some specific additional data. SelfUser adds to the de-
scribed scenario structured data stored in a PostgreSQL
DBMS, providing information about the energy consump-
tion, the energy production by photovoltaic panels, and
weather conditions. This structured data presents a gran-
ularity of 15 minutes and is obtained by preprocessing
some of the raw data described above. PELL platform
deals with static data (e.g., the position of the lighting
devices), stored using a MySQL DBMS, and dynamic data
(e.g., information about the energy consumption, mea-
sured by smart meters), stored in HDFS [10] according
to the UrbanDataset data structure7.

The ingestion of the described input data can be man-
aged in different ways. The main solution adopted
by ENEA is based on the open-source system integra-
tion framework Apache Camel8, running in a deeply
customized OSGi Apache Karaf9 container, named Sig-
nalMix. In this environment, both specific custom compo-
nents and Camel allow to use domain specific languages
(namely, a Java DSL and a Spring XML DSL) to define
routes, containing flow and logic of integration between
different systems, protocols, and formats, supporting
most of the enterprise integration patterns. However,
also different solutions are adopted depending on the
source (e.g., some JSON/CSV files are sent directly by the
users via e-mail).

ENEA exploits two web servers to store the ingested
data. The central element is the Data Hall server, which
supports the so-called “Triage Area”, which is the refer-
ence for the storage of unstructured data and contains
the files (whose format can be CSV, JSON, etc.) as they
are acquired from the sources by data ingestion systems,
without applying further preprocessing operations on

7https://smartcityplatform.enea.it/UDWebLibrary
8https://camel.apache.org
9https://karaf.apache.org

them. From the Data Hall server it is possible to access
the second server, called Data Collector, via remote port
forwarding. This server supports a PostgreSQL10 DBMS,
which represents the reference for structured data in-
stead (e.g., the ones related to SelfUser). Moreover, it
is possible to exploit additional database management
systems for testing which are available on other local
network servers.

2.2. Data Workflow
The module on the right in Figure 1 represents ECDP,
the big data platform designed to extract value from this
great amount of ingested data. To ensure maximum flex-
ibility, allowing different types of users to operate on
data in different ways, it is possible to define two spe-
cific workflows (with the related functional modules): (i)
a Data Integration Workflow, designed to perform data
integration, which provides the main access point to the
unified data for every application; (ii) a Data Lake Work-
flow, which allows to store the whole historical data in
a raw (i.e., not integrated) form, available to be handled
by expert users if needed. Both systems are coordinated
through a Data Workflow Management System, used to
define the settings for the operations needed to man-
age the data workflow (e.g., new input data activating
triggers/ETL, failure alerts, error-handling). These three
modules are detailed in the following subsections.

2.2.1. Data Integration Workflow: MOMIS

The chosen data integration tool is MOMIS, and it was a
natural choice, since this open-source system currently
managed by DataRiver was designed by the DBGroup
and played a central role in its research activities for
several years [11, 12].

MOMIS is based on a wrapper/mediator architecture:
the wrapper makes available a data source to be inte-
grated, then the mediator performs data fusion [13] to
generate in a semi-automatic way a mediated schema,
called Global Virtual View (GVV) or Global Schema (GS),
of the schemas of the local sources. The user can query
this schema (through the query manager or through third-
party applications) to obtain a complete and unified view
of the data contained in the local sources. MOMIS is a
virtual data integration system, i.e., the data is retrieved
from the sources at query time. This allows to avoid
data replication, so that each query returns updated data.
However, it is possible to materialize some global classes
(materialized views); this can be useful to optimize the
retrieval of frequently used data or complex queries.

In particular, ECDP is based on MOMIS I4.0, the spe-
cific industrial IoT extension of MOMIS for Industry 4.0
[4], a web and mobile application designed to effectively

10https://www.postgresql.org

https://smartcityplatform.enea.it/UDWebLibrary
https://camel.apache.org
https://karaf.apache.org
https://www.postgresql.org


collect and manage big data generated by machinery and
sensor networks in industrial processes, exploiting artifi-
cial intelligence and machine learning techniques. This
platform provides tools for the continuous monitoring
and advanced services for the real-time analysis of pro-
duction and quality performance, which allows to learn
from experience for predictive maintenance policies, pro-
duction process optimization, and energy consumption
reduction. The technology stack of MOMIS I4.0 is illus-
trated in Figure 2.

Data ingestion is performed by software modules
called wrappers, which allow to connect to data sources,
extracting their schemas and features. The interfaces
created through the analysis of these schemas allow to
represent the heterogeneous sources in a common lan-
guage, making them homogeneous through data integra-
tion services. Several wrappers were created for ECDP to
obtain the representation of data from different dataflows:
(i) a version of the CSV wrapper for detecting the ZIP
archives about condominium data on the Data Hall server
and extracting their content; (ii) a version of the CSV
wrapper for detecting the files about smart meter data
on the Data Hall server; (iii) a version of the JSON wrap-
per for detecting the files about meteorological data on
the Data Hall server; (iv) the PostgreSQL wrapper for
connecting to the DBMS on the Data Collector server
to ingest SelfUser data; (v) the Delta Lake wrapper to in-
gest PELL data from the data lake. Moreover, an MQTT,
an OPC UA, and a WoT wrapper, not used in the final
version, were implemented and initially considered to
directly ingest data from smart meters.

The software module for data integration exploits the
MOMIS mediator to obtain the semantic representation
of data sources, allowing to create an ontology of the
domain, called Renewable Energy Community (REC) On-
tology. The semantic integration is used to perform the
mapping between data sources and the mediated schema.
Novel services to support data integration were devel-
oped for ECDP, allowing to intervene on dataflows with
transformation operations such as applying mathemati-
cal operators, computing average/minimum/maximum
values, performing time conversion to different formats
(e.g., UNIX format) and time-based missing value im-
putation, adding or removing tuples according to data
timestamp.
ECDP exploits a hybrid storage, based on two solutions

for different uses: (i) Delta Lake storage layer, used to
store big data for offline data historicization and analy-
sis (if the data timestamp has passed the retention time,
the data is historicized in Delta Lake and removed from
PostgreSQL); (ii) PostgreSQL relational DBMS optimized
through PostGIS and TimescaleDB extensions for query-
ing temporal series, used to answer most frequent queries
on recent data, and containing synthesis of the data his-
toricized in Delta Lake.

Figure 2: MOMIS Industrial IoT Technology Stack.

Data querying and export services are used to allow au-
thorized users and applications to access a certain portion
of data or aggregate view. The access is managed through
a role-based access control to guarantee to each type of
user the right to access the needed information and at
the same time the security of the information for which
the authorization was not granted. ECDP relies on two
distinct APIs: (i) ExportUD, to query the integrated table
of readings and export the values in UrbanDataset-XML,
UrbanDataset-JSON, or raw CSV format; (ii) SQL_API, to
run the user queries based on the queries defined in the
application and the related access authorizations.
ECDP also supports a customized script scheduling

service, which can be used to run scripts on MOMIS
server. This service simply runs the main class of the
script (in Bash or MATLAB language) and is extremely
flexible, since it can use the GUI to collect different scripts
and to define the configuration for their scheduling.

Finally, the source management and storage services
allow to monitor the data collected and processed by
the other software modules. In particular, the source
management dashboard was realized using MOMIS data
analytics module (i.e., MOMIS Dashboard). It supports a
unified view of the business data integrated with external
data sources, searching and monitoring aggregate data
from distributed and heterogeneous data sources, visual-
izing indicators on charts and dynamic tables, managing
security and visibility of data based on roles and user
groups.

2.2.2. Data Lake Workflow: Delta Lake

The estimated size of data and the available resources
allow to store raw data (i.e., data as it is acquired, without
applying any preprocessing operation on it) in a data lake
which lays on HDFS. The main goal of this workflow is to
support data analysis performed by advanced users who
need to access raw data to retrieve additional information
that cannot be obtained from integrated data. For exam-
ple, raw sensor data collected with a granularity of one
second is stored in the data lake, while in Data Integra-



Figure 3: Data Hall Dataflow.

tion Workflow it is aggregated according to a granularity
of 15 minutes. Thus, if an advanced user needs data at
the finest granularity, it is necessary to exploit Data Lake
Workflow. The chosen technology for the data lake is
Delta Lake [1], an open-source project which allows to
manage a great amount of data using existing storage
tools such as HDFS. Delta Lake is integrated with the
whole Apache Spark11 ecosystem, allowing the native use
of all its libraries (e.g., MLib for machine learning) and to
execute efficient elaborations on data both in batch and in
streaming mode. The possibility of exploiting this pow-
erful engine to operate on raw data was one of the core
reasons for the choice of Delta Lake, also considering the
significant role played by Spark in the DBGroup research
activity [14, 15, 16]. Delta Lake is a mature device, used
by multiple cloud service providers such as Databricks
and Microsoft Azure, which supports ACID transactions,
guaranteeing the highest level of isolation (this allows
to execute at the same time read and write operations
without issues about data integrity). Delta Lake exploits
Apache Parquet12, an open-source format which operates
data compression, requiring much less space for data stor-
age than the one required by the original format (usually
CSV). Moreover, it supports data versioning, tracking the
operations executed on data through a system of logs
and allowing to execute rollback, it allows to modify data
schema, and it handles metadata as it were data.

2.2.3. Data Workflow Management System:
Apache Airflow

The goal of the Data Workflow Management System is
the orchestration of the different functional modules. In
particular, when new data is made available from the
sources, it has to provide the mechanisms to automati-
cally identify it and to raise the appropriate workflows.
Furthermore, it has to support the handling of the pres-
ence of unexpected errors and it must allow to compose
workflows by combining different software modules. The
chosen tool has to be compatible with these modules,
programmable, and simple to use. Considering these re-

11https://spark.apache.org
12https://parquet.apache.org

Figure 4: Data Collector Dataflow.

quirements, we chose Apache Airflow13, which allows to:
(i) manage task workflows through simple Python scripts
defining the dependencies among tasks, whose execution
order can be represented with a directed acyclic graph
(each module is a black box, so it can be executed by any
tool and implemented with any programming language);
(ii) monitor the workflow (even through a GUI) and man-
age the possible errors generated by tasks, using scripts
to define the trigger rules.

3. Use Cases and Scenarios
In this section we report three dataflows related to real-
world use cases that show how ECDP can be used in
different application scenarios. In particular, we want
to illustrate: (i) how unstructured data is ingested (Sec-
tion 3.1); (ii) how structured data is managed (Section 3.2);
(iii) how it is possible to use Spark to directly import data
in the platform (Section 3.3).

The chosen dataflows let us highlight the advantages
and the flexibility offered by the coexistence of the two
distinct workflows, using a data lake to store the entire
raw data (i.e., Data Lake Workflow) in combination with
a structured database to store the integrated data (i.e.,
Data Integration Workflow). In fact, this solution allows
the standard users to access an integrated and clean view
of the data (e.g., they can see in a dashboard the hourly
energy production by the photovoltaic panels related to
the weather conditions), while advanced users can use
the raw data to perform advanced tasks (e.g., a data sci-
entist can use the data about the energy production by
the photovoltaic panels collected at the finest granular-
ity combined with the solar radiation collected by the
sensors to train a machine learning model to predict the
energy production).

3.1. Data Hall Dataflow
Data Hall is the web server managed by ENEA on which
is located the so-called "Triage Area" (see Figure 1), that
hosts unstructured raw data (e.g., JSON and CSV files).

13https://airflow.apache.org

https://spark.apache.org
https://parquet.apache.org
https://airflow.apache.org


Figure 5: Delta Lake Dataflow.

The web server mainly contains data of the SelfUser
project, which aims to test the Clean Energy Package
directive by creating an innovative plant, in a pilot form,
to support the energy transition through the promotion
of energy produced by renewable sources (in this case,
photovoltaics). The data, such as the energy consump-
tion, the energy production by photovoltaic panels, and
weather conditions, is collected from several sensors
placed in smart buildings. The data can be considered
as a time series with a different time granularity: the en-
ergy consumption/production is measured every second,
while the weather information every minute.

The dataflow is described in Figure 3. Firstly, MOMIS
(Figure 3-1) acquires the new data from the Data Hall
server by using its wrappers and stores it into Delta Lake,
where it can be used for further analysis by directly query-
ing the data lake with the connectors provided by Spark
(Figure 3-4). Then, raw data is processed by MOMIS
to clean and integrate it. The resulting integrated data
is materialized in a PostgreSQL database with PostGIS
and TimescaleDB extensions: this data can be consid-
ered as a time series with also geographic coordinates,
reflecting the position of the sensors (Figure 3-2). The
integrated data is made available for external services
(e.g., MOMIS Dashboard, REST APIs) that can be used to
analyze the most recent data (Figure 3-3). Then, after a
predefined retention time, the integrated data is moved
from PostgreSQL to Delta Lake (Figure 3-5) to avoid los-
ing in performance, creating an historical view of the
data.

3.2. Data Collector Dataflow
Data Collector is the web server managed by ENEA that
hosts the PostgreSQL database containing the structured
data of the SelfUser project. The database stores a cleaned
and aggregated version of the raw data about the energy
consumption, the energy production, and weather condi-
tions; all measurements are aggregated at intervals of 15
minutes.

The dataflow to import this data in ECDP is described in
Figure 4. MOMIS connects to the Data Collector server by
using the apposite wrapper, acquires the data never read

before, and stores it in a PostgreSQL database optimized
to manage time series (Figure 4-1). Since this data was
already preprocessed and aggregated, no further transfor-
mations are needed and can be made available to external
data analysis services, such as MOMIS Dashboard and
REST APIs (Figure 4-2). Again, the integrated data is
periodically moved from PostgreSQL to Delta Lake (Fig-
ure 4-3), where advanced users can operate on it using
Spark (Figure 4-4).

3.3. Delta Lake Dataflow
Public Energy Living Lab (PELL) is a platform developed
by ENEA to collect data about the energy consumption
of public lighting, which represents a key task for urban
renewal. The platform uses MySQL to store static infor-
mation about the lighting devices (e.g., the position and
other technical details) and HDFS to store the consump-
tion of each device (dynamic data).

The dataflow is described in Figure 5. The static and dy-
namic data collected from the PELL server is combined by
using a Spark script that produces a DataFrame which is
stored into Delta Lake (Figure 5-1). From Delta Lake, the
data can be directly queried by advanced users through
the connectors provided by Spark (Figure 5-4) or it can be
processed by MOMIS (Figure 5-2). MOMIS reads the data
from Delta Lake, performs data integration operations,
and stores the data in a PostgreSQL database equipped
with extensions to manage time series; in fact, the data
about the energy consumption can be seen as a time se-
ries, since every record is associated with a specific time.
The users can access the integrated data by querying the
database through a dashboard with predefined views, or
by using REST APIs (Figure 5-3). Periodically, after a pre-
defined retention time, to avoid losing in performance
the integrated data is moved from PostgreSQL to Delta
Lake (Figure 5-5).

4. Conclusions
We presented the Energy Community Data Platform
(ECDP), a big data platform designed for the smart moni-
toring of local energy communities, to encourage a more
conscious use of energy by the users. For this purpose,
ECDP can be useful both for the administrators of the
energy communities, allowing a better monitoring of the
community performance and a classification of the en-
ergy consumption profiles, and for the users, which can
set energy (self-)consumption targets and receive feed-
back about their adherence to these plans, adapting their
behavior accordingly in a conscious way. The modular
architecture of ECDP, conceived to support different uses
of data by different types of users, has the goal of maxi-
mizing flexibility and scalability. As illustrated through



real-world use cases, these features represent the main
strengths of the presented big data platform and make
ECDP suitable for being applied to any type of local en-
ergy community.

The main lesson that we learned from this project,
which makes our experience relevant and reusable for re-
lated tasks, is that maintaining the workflows separated
through a modular architecture allows to combine the
strengths of each adopted tool, guaranteeing the avail-
ability of data at different abstraction levels, making the
system more flexible to better support future changes,
and meeting the needs of the different types of users. The
data lake (Delta Lake) can store in an efficient way a huge
amount of raw data, allowing to perform further analysis
operations on it. The data integration system (MOMIS)
can clean and integrate the raw data and store it into the
relational DBMS (PostgreSQL with TimescaleDB exten-
sion). The relational DBMS can be used as a cache to store
materialized views of the most recent integrated data (old
ones are moved to the data lake) fastening the access by
the data analytics tools (MOMIS Dashboard). A single
workflow cannot guarantee this flexibility: directly inte-
grating and storing the whole data in a relational DBMS
would not allow to exploit raw data to perform new types
of analysis in the future, while relying only on Delta Lake
raises significant efficiency issues, since its Spark-based
interaction requires to load the whole dataframe in mem-
ory every time. Abstracting from the specific case, this
lesson can be useful for every project dealing with the
management and the analysis of time series, proposing
an approach to face this challenging task for big data
platform design and implementation.

Acknowledgements
The project was funded by the Italian Ministry of Eco-
nomic Development as a part of the 2019-2021 National
Electricity System Research Plan.

References
[1] M. Armbrust, T. Das, S. Paranjpye, R. Xin, S. Zhu,

A. Ghodsi, B. Yavuz, M. Murthy, J. Torres, L. Sun,
P. A. Boncz, M. Mokhtar, H. V. Hovell, A. Ionescu,
A. Luszczak, M. Switakowski, T. Ueshin, X. Li,
M. Szafranski, P. Senster, M. Zaharia, Delta Lake:
High-Performance ACID Table Storage over Cloud
Object Stores, Proc. VLDB Endow. 13 (2020) 3411–
3424.

[2] S. Bergamaschi, S. Castano, M. Vincini, Semantic
Integration of Semistructured and Structured Data
Sources, SIGMOD Rec. 28 (1999) 54–59.

[3] S. Bergamaschi, P. Bouquet, D. Giacomuzzi,
F. Guerra, L. Po, M. Vincini, An Incremental Method

for the Lexical Annotation of Domain Ontologies,
Int. J. Semantic Web Inf. Syst. 3 (2007) 57–80.

[4] L. Magnotta, L. Gagliardelli, G. Simonini, M. Orsini,
S. Bergamaschi, MOMIS Dashboard: A Powerful
Data Analytics Tool for Industry 4.0, in: TE 2018,
volume 7 of Advances in Transdisciplinary Engineer-
ing, IOS Press, 2018, pp. 1074–1081.

[5] G. Simonini, S. Bergamaschi, H. V. Jagadish, BLAST:
a Loosely Schema-aware Meta-blocking Approach
for Entity Resolution, Proc. VLDB Endow. 9 (2016)
1173–1184.

[6] G. Simonini, G. Papadakis, T. Palpanas, S. Bergam-
aschi, Schema-Agnostic Progressive Entity Resolu-
tion, in: ICDE 2018, IEEE Computer Society, 2018,
pp. 53–64.

[7] G. Simonini, L. Zecchini, S. Bergamaschi, F. Nau-
mann, Entity Resolution On-Demand, Proc. VLDB
Endow. 15 (2022).

[8] G. Papadakis, L. Tsekouras, E. Thanos, N. Pittaras,
G. Simonini, D. Skoutas, P. Isaris, G. Giannakopou-
los, T. Palpanas, M. Koubarakis, JedAI3: beyond
batch, blocking-based Entity Resolution, in: EDBT
2020, OpenProceedings.org, 2020, pp. 603–606.

[9] F. Guerra, G. Simonini, M. Vincini, Supporting
Image Search with Tag Clouds: A Preliminary
Approach, Adv. Multim. 2015 (2015) 439020:1–
439020:10.

[10] D. Borthakur, HDFS Architecture Guide, Hadoop
Apache Project (2008).

[11] S. Bergamaschi, D. Beneventano, F. Guerra,
M. Orsini, Data Integration, in: Handbook of Con-
ceptual Modeling, Springer, 2011, pp. 441–476.

[12] S. Bergamaschi, D. Beneventano, F. Mandreoli,
R. Martoglia, F. Guerra, M. Orsini, L. Po, M. Vincini,
G. Simonini, S. Zhu, L. Gagliardelli, L. Magnotta,
From Data Integration to Big Data Integration,
in: A Comprehensive Guide Through the Italian
Database Research, volume 31 of Studies in Big Data,
Springer International Publishing, 2018, pp. 43–59.

[13] J. Bleiholder, F. Naumann, Data fusion, ACM Com-
put. Surv. 41 (2008) 1:1–1:41.

[14] G. Simonini, L. Gagliardelli, S. Bergamaschi, H. V. Ja-
gadish, Scaling entity resolution: A loosely schema-
aware approach, Inf. Syst. 83 (2019) 145–165.

[15] L. Gagliardelli, G. Simonini, D. Beneventano,
S. Bergamaschi, SparkER: Scaling Entity Resolu-
tion in Spark, in: EDBT 2019, OpenProceedings.org,
2019, pp. 602–605.

[16] L. Gagliardelli, S. Zhu, G. Simonini, S. Bergamaschi,
BigDedup: A Big Data Integration Toolkit for Du-
plicate Detection in Industrial Scenarios, in: TE
2018, volume 7 of Advances in Transdisciplinary
Engineering, IOS Press, 2018, pp. 1015–1023.


	1 Introduction
	2 The Energy Community Data Platform (ECDP)
	2.1 Data Sources
	2.2 Data Workflow
	2.2.1 Data Integration Workflow: MOMIS
	2.2.2 Data Lake Workflow: Delta Lake
	2.2.3 Data Workflow Management System: Apache Airflow


	3 Use Cases and Scenarios
	3.1 Data Hall Dataflow
	3.2 Data Collector Dataflow
	3.3 Delta Lake Dataflow

	4 Conclusions

