
ICWE 2008 Workshops, 7th Int. Workshop on Web-Oriented Software Technologies – IWWOST 2008

Web User Interface Generation for Multiple Platforms

Francisco J. Martínez-Ruiz1, Jean Vanderdonckt1, Jaime Muñoz Arteaga2
1Université catholique de Louvain, Louvain School of Management

Place des Doyens, 1 – B-1348 Louvain-la-Neuve, Belgium
2Universidad Autónoma de Aguascalientes, Centro de Ciencias Básicas.

Av. Universidad 940, CP. 20100, Aguascalientes, Mexico
 martinez@isys.ucl.ac.be, jean.vanderdonckt@uclouvain.be, jmunozar@correo.uaa.mx

Abstract

In order to produce Web User Interfaces tailored for

multiple platforms. This paper introduces an algorithm for
semi-automated generation of user interface containers
based on a task model. User interface containers are first
derived from the configuration of a task model and then
refined according to parameters characterizing user and
computing platform. In this way, it is possible to render
container structures for user interfaces in a specific lan-
guage and platform.

1. Introduction

The design of User Interfaces involves a process of
gathering tasks (i.e. they are used as building blocks in
order to describe the goal pursuit by the software applica-
tion). Task hierarchies are abstract representations. There-
fore, they are translated into more physical structures. The
arrangement of these structures is not a trivial process in
most of the cases. Applications are distributed over a cer-
tain number of containment structures due to temporal,
spatial and cognitive load limitations. Instead of reducing
these constraints to mere boundaries is possible to extract
relevant information that could guide our designing proc-
ess. For instance, if the container generation is aware of
platform requirements in early stages of development,
then it could prevent the rupture of related task groups (or
the gathering or unrelated ones). In this paper we tackle
these problems taking into account the semantic informa-
tion coming from a neutral description of the UI, applying
a set of rules based on heuristic knowledge of the relation-
ship between operators and the introduction of a metric for
weighting abstract containment structures.

The design of a UI in the Web domain implies the divi-
sion of the application into Web pages. Each one covers
some tasks of the application. However, the page meta-
phor is moving to the Single Page Application approach

(SPA) [17]. In this kind of web applications, the behavior
and content of a single web page is changed though dy-
namic modifications of the Document Object Model
(DOM) that represents the web page. That is, SPAs need
to deal with container structures which are dynamically
transiting from visible/focused to invisible/unfocused
status. For instance, there are many item-grouping librar-
ies in the GUI world (e.g. Java layout managers). These
libraries follow a general schema that we depicted in
fig. 1: First, we have a frontier-component that serves as
a foundation canvas for the application. Second, an unde-
fined number of containment elements following an initial
order of presentation. They are ordered but they can be
presented to the user in a rotation of states from visi-
ble/available to invisible/non available.

Figure 1. An example of the layers.

The rest of this paper is organized as follows: Section 2
discuss the state of the art in the creation of containers.
Section 3 introduces some theory in Task models and
model driven engineering domains. Then Section 4 covers
the description of our method. And finally section 5 pre-
sents conclusions and future work.

2. State of the art

The difficulties that arise when you design containers
include: First, how to solve the problem of distribution the
UI over the available physical space since the size of the
view is finite and as a consequence (in the non trivial UIs)
we have to divide the UI in multiple views, this issue is

63

ICWE 2008 Workshops, 7th Int. Workshop on Web-Oriented Software Technologies – IWWOST 2008

treated in [1, 4, 8]. Also this perspective tries to solve the
container problem in terms of available space (i.e., geo-
metrical constraints [15, 21] or more general restric-
tions [12]); the nature of the problem is NP-complex [8].
Second, how to determinate the acceptable frontier points
that should be respected to create a coherent hierarchy of
views. This process requires more knowledge (over the
simple layout structure that is treated as proposed in [9,
10, 14] but with limitations in the recovery of information
over the physical restrictions) to avoid grouping unrelated
elements or breaking groups. The place to get this infor-
mation in the following papers is a meta-description of the
UI that is built in terms of a set of tasks: a task model. In
[3, 5, 13, 20] is created a hierarchy of widgets to define in
a device independent way the UI and use a bottom-up
algorithm that is based in the condition of “splittable” or
not of the nodes (The nodes of the tree can be labeled as
splittable or un-splittable) and from there looking for the
highest ancestor of the node and the resultant sub tree is
marked as a page. Nevertheless, the process does not in-
clude temporal information from the task model and the
division point is defined in a fixed way. In [18] the idea of
using the task model is explored but in this case the tem-
poral operators are key elements to provide information of
how divide and create the containers. The task model is
traversed in a Breadth-first search and through a set or
principles proposes the way of reducing the UI from the
less constrained platform to display it in devices with
fewer capabilities in a process called “graceful degrada-
tion”. In order to create the containers in [19] again the
starting point is the task model and the relationship be-
tween tasks is extracted from the information enclosed in
the domain model besides the identification of tasks re-
lated to fulfill user goal and supplementary tasks. In [13]
temporal operators are used to propose a presentation
where tasks that should be enabled at the same time are
grouped in two sets: first and body. Here, the relevance of
the so called first action is over-valuated while in the pro-
posed algorithm the weighting metrics are based on more
parameters (specifically, task types and operators besides
the inclusion of the knowledge of the allowed deepness of
hierarchies in a specific technology). The last container
generation method is part of [20] which does not worry
for space constraint because is oriented to discover and
use the relationship between tasks and subtasks to create
device-independent UIs. Also, there is work developed in
this area focusing the problem as an optimization task [2,
6, 7] in our proposal we are using some heuristics based in
the notion of strong repercussion of the temporal operators
that are used, this is also present in [13, 20]. This paper
proposes as solution in the next section: a model-based
approach in order to create a feasible mapping between
the finite layers and the task decomposition [13, 18, 19].

3. Model Driven Engineering Approach

Our methodology is supported by a Model driven engi-
neering approach (http://www.omg.org/). We are going to
present its core elements: the CAMELEON frame-
work [22], UsiXML [20] and the CTT task model [13].

3.1 CAMELEON Framework

The design of UIs using a model based approach that
includes features as Multi-level abstraction and Modality
independence [16] requires the use of a framework to deal
with the complexity of the process. We are using the
CAMELEON framework [22]. This framework divides
the development process in four successive levels of ab-
straction: Task and concepts (T&D), Abstract User Inter-
face (AUI), Concrete User Interface (CUI) and Final User
Interface (FUI). The UI is represented in the User Inter-
face Description Language, UsiXML (UsiXML which
stands for User Interface eXtensible Markup Language).
This language provides the representation of the UI in the
four levels of the framework, in a design independent way
and over multiple contexts e.g., Character, vocal and
Graphical User Interfaces among others.

3.2 CTT-based task models

The Concur Task Tree model (CTT) is a well known
technique in Computer-Human Interaction to model an
application in an independent platform way. The task
model of UsiXML is implemented through CTTs. The
objective of this model is to explain the work that the user
pursuits as a hierarchy of tasks where each task is decom-
posed until arriving to basic tasks. The description below
is very brief and a more detail description could be found
in [13]. The sibling tasks (denoted as T) are related to
each other through the following binary and unary opera-
tors: Concurrent Operators: These operators imply that T1
and T2 are performed in any order, in a concurrent order:
|=|, ||| and |[]|. Sequential operators: [>, |>, >> and []>>
these operators imply a strict sequence in the order of exe-
cution of the tasks. Selection operator: [] exclusive choice
between T1 and T2. The unary operators include: The
Optional operator [T] that implies the dispensable nature
of some tasks. The Iterative operator T* that gives the
model the faculty of describing cycles.

4. Method outline

The following section describes the proposed method
to generate Web UI containers. Before going any further,
we have to introduce some concepts: A level is a set of
tasks recovered by an exploration of all nodes adjacent to
the current task node in a breadth-first search. The root by

64

ICWE 2008 Workshops, 7th Int. Workshop on Web-Oriented Software Technologies – IWWOST 2008

definition is the first level. Also we have to define the
concept of layer which is a set conformed by each con-
tainment element that belongs to the same parent container
e.g. in the right side of Fig. 1 are shown a UI with four
layers.

 In order to clarify the explanation a case study is pre-
sented (see Fig. 2). A sub-tree will be updated after each
step of the method.

Figure 2. Task Tree Model of Bookmark manager.

4.1 Recovery of sub trees

The first step is the identification of levels (see Fig. 3).
The case study includes eight levels (according to the
given definition). Then sub-trees are created using as pa-
rameter the number of layers acceptable in the target plat-
form. The procedure is as follows. The algorithm starts
a bottom-up climbing of the tree searching the parent node
at the nth layer. The starting point, called anchor node (see
Fig. 3a) is the deepest and the most left positioned leaf
node (in order to respect any possible sequence operator).

Figure 3. Levels and first anchor of task tree (a).

After that the procedure is repeated. The anchor node is
relocated and the climbing restarts until it reaches the root
node. The final product is a sub-tree called from now on:
virtual container (VC). A formal description of the algo-
rithm is presented in Fig. 5.

The definition of layers is done in terms of heuristic
notions. Most of platforms do not impose a fixed nor static
number of layers then we have to define an approximated
value. For instance, in Fig. 4 the possible number of layers
of four devices is presented as a guide to the designer.
Next we present the result for the case of three layers in
Fig. 6 (in this case the procedure delivers four containers).

Figure 4. Features of four platforms.

Figure 5. Algorithm for generating Virtual
Containers.

4.2 The generation of the internal structure

The second step is the evaluation of the internal structure of each
container. This in turn provides us with the required information
to generate the hierarchy of inner containers. This process is
based on the generation of abstract containers [20] and we have
to remember that the root task since is an inner node is marked
as container not as a work to do (for instance, get or retrieve
a value). Now in order to reduce the complexity of the process
we are going to mark each level as a set of inner nodes if any
sibling is a branch parent (e.g. Fig. 7, sections 7a and 7b are
inner nodes), otherwise they are marked as leaves (see Fig. 7c).
Then (1) is applied to each set of nodes (for instance Figs. 7a
to 7c).

65

ICWE 2008 Workshops, 7th Int. Workshop on Web-Oriented Software Technologies – IWWOST 2008

Figure 6. Virtual Containers generated.

Figure 7. A simplified version of a VC (Fig. 6d).

Let I and L denote the sets of inner and leafs nodes, re-
spectively. Let op denote the operator set formed by {C, F,
and S} Where C is the set of all concurrent operators. F is
the Selection operator and S is the set of sequential opera-
tors. Let T denote the analyzed task set. Finally, let n de-
note the amount of generated containers.

()

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

∈∧∈←
∈∧∈←
∈∧∈←
∈∧∈←
∈∧∈
∈∧∈

←
←∪

=

SopLT
SopITn
FopLT
FopITn
CopLT
CopITnB

nG

0

1

0
0)(

 (1)

Without the presence of any restriction the number of
configurations to generate is equivalent to the problem of
location of elements in a set of boxes (see Bell numbers
algorithm). For instance, the hypothetical VC from Fig. 8a
with three concurrent tasks (A, B and C) has six possible
containment configurations according to (1). This process
is presented as a formal algorithm in Fig. 9.

Now consider the VC (Fig. 6d) of the case study and in
this situation is possible to deliver three configurations
(see Figs. 10, 11 and 12). Another point of interest is the

process of propagation of the control widgets e.g. the
“close task” that is member of the first container (Fig. 6a).

Figure 8. Example of application of G(n).

 Figure 9: The process of generating containers.

Figure 10. A configuration with 6 container
units (C1).

This task should be available in all the UI then it should
be propagated. The process is straightforward: the task is
integrated to each children container (see Fig. 10a). It is
important to remember that inner nodes as ChangeBMDe-
tails in Fig. 10b are removed but her name should be
propagated in their children containers (e.g, container 10c
could be named ChangeBMDetails.showBMParameters in
order to preserve information of the task hierarchy).

66

ICWE 2008 Workshops, 7th Int. Workshop on Web-Oriented Software Technologies – IWWOST 2008

4.3 Choosing the configuration

After the generation of the container structures comes
a weighting process, based on the values of table 1. Once
again the process involves exploiting semantic informa-
tion (now from task types and operators).

Figure 11. A configuration with 4 containers (C2).

Figure 12. A configuration with 5 containers (C3).

Then we count all the exposed items of the container
(leaf task and operators) using a breadth-first walk while
the inner containers would be seen as black boxes and
dismissed in order to apply (2).

∑∑ ×+×= woperatorswtasksvalue (2)

It is worth noting that weight values are based on heu-
ristics notions of the importance and complexity of the
task types and operators and it is a pending task an evalua-
tion of current values (as well as the layer weights). Now,
it is presented in Fig. 13 the three configurations (Figs. 10,
11 and 12) as simplified weight trees. Nodes are labeled
with their weight and the external value indicates the con-
tainer label (Note: Fig. 13a show the weighting process).

Fig. 13. Cost of each container in updateBM VC.

Now, we have to present to the designer the most suit-
able configuration and for that we are going to use a clas-
sic metric, the weighted average. Then, the configurations
with lower cost are presented to the user. The weights are
related with the number of layers that previously we have
defined as constraint of the VC containers. Finally, ac-
cording to the result of table 2 we should suggest our
user/designer the configuration C2 (Fig. 11). The process
of transformation from task model to AUI is out of the
scope of this paper since it is discussed in [3, 20].

4.4 Navigational tasks

The method at this point could deliver three AUIs con-
nected with navigation elements. For instance, the way of
connected the UIs could be seen more clearly in the prob-
lem of the fragmentation of the sub tree depicted in Fig.
6e, there the task Update is a sub task of an upper tree
besides it is the root node of other container. Then, the
approach taken to resolve this situation is the introduction
in the upper container of a navigation component pointing
to the lower one. A fundamental consideration is the fact
that the proposed method (for the moment) is not looking
optimization. Instead of that it wants to provide the de-
signer with plausible scenarios.

5. Conclusion and future work

In this paper we have presented an alternative method
for the semi-automatic generation of the hierarchy of con-
tainers that compose a UI. This method is based on the
recovery of semantic information extracted from the tree
structure and the operator types. The data is extracted
from the topology of the tree and the operators interacting
with the tasks. The result is a feasible UI well balanced
over the layers also flexible enough to allow the developer
select alternative configurations.

67

ICWE 2008 Workshops, 7th Int. Workshop on Web-Oriented Software Technologies – IWWOST 2008

Table 1. Weight of task tree elements.

Table 2. Weighted average of the containers.

This method could help in fast prototyping as well as in
exploration of news containment dispositions. Addition-
ally, this method is platform independent since we only
deal with an abstract definition of the UI. Finally, we are
going to explore the integration of the algorithm into an
editor tool in order to make extensive tests.

Acknowledgements: This work was supported by Alβan,
the European Union Program (www.programalban.org)
of High Level Scholarships for Latin America, under ref-
erence E06D101371MX and by the SIMILAR network of
excellence, the European research taskforce creating hu-
man-machine interfaces SIMILAR to human-human com-
munication under reference FP6-IST1-2003-507609
(www.similar.cc).

References

[1] Badros, G.J. Borning, A., and Stuckey, P.J. The Cassowary
Linear Arithmetic Constraint Solving Algorithm, ACM
Trans. on CHI 8, 4 (2001) pp. 267-306.

[2] Borning, A. and Duisberg, R. Constraint-based Tools for
Building User Interfaces. ACM Transactions on Graphics
5, 4 (1986) 345-374.

[3] Bouillon, L. and Vanderdonckt, J. Retargeting Web Pages
to other Computing Platforms with VAQUITA. In Proc. of
WCRE’2002, IEEE Computer Society Press, Los Alamitos
(2002), pp. 339-348.

[4] Chen, Y., Xie, X., Ma, W.-Y., and Zhang, H.-J. Adapting
Web Pages for Small-Screen Devices. IEEE Internet Com-
puting 9, 1 (2005), 50-56.

[5] Chu, H., Childreng, H., Wong, C., Kurakake, S., and
Katagiri, M. Roam, a Seamless Application Framework.
Journal of System and Software 69, 3 (2004), 209-226.

[6] Fogarty, J. and Hudchildren, S.E. GADGET: A Toolkit for
Optimization-based Approaches to Interface and Display
Generation. In Proc. of UIST’03, ACM Press (2003).

[7] Gajos, K. and Weld, D.S. SUPPLE: Automatically Gener-
ating User Interfaces. In Proc. of IUI’2004, ACM Press
(2004), 93-100.

[8] Lim, A. and Zhang, X. The Container Loading Problem. In
Proc. of SAC’05, ACM Press (2005).

[9] Lok, S. and Feiner, S.K. The AIL Automated Interface
Layout System. In Proc. of IUI’02, pp. 202-203.

[10] Lok, S., Feiner, S., and Ngai, G. Automated User Interface
Generation: Evaluation of Visual Balance for Automated
Layout. In Proc. of IUI’04, pp. 101-108.

[11] Mori, G., Paternò, F., and Santoro, C. Design and Devel-
opment of Multi-device User Interfaces through Multiple
Logical Descriptions. IEEE Trans. Software Eng. 30, 8
(2004), pp. 507-520.

[12] Nichols, J., Myers, B.A., Higgins, M., Hughes, J., Harris,
T.K., Rosenfeld, R., and Pignol, M. Generating Remote
Control Interfaces for Complex Appliances. In Proc. of
UIST’02, ACM Press (2002).

[13] Paternò, F., Model-Based Design and Evaluation of Inter-
active Applications. Springer-Verlag, London, 1999.

[14] Ponnekanti, S., Lee, B., Fox, A., Hanrahan, P., and Wino-
grad, T. ICrafter: A Service Framework for Ubiquitous
Computing Environments. In Proc. of Ubicomp’ 2001,
Springer-Verlag (2001) pp. 56-75.

[15] Sears, A. AIDE: A Step Toward Metric-based Interface
Development Tools. In Proc. of UIST’95, pp. 101-110.

[16] Vanderdonckt, J. A MDA-Compliant Environment for De-
veloping User Interfaces of Information Systems. In Proc.
of CAiSE'05, Springer-Verlag, (2005), pp. 16-31.

[17] Mahemoff, M., Ajax Design Patterns. O'Reilly & Associ-
ates, Inc., USA, 2006.

[18] Florins, M., Simarro, F. M., Vanderdonckt, J., and Mi-
chotte, B. 2006. Splitting rules for graceful degradation of
user interfaces. In Proc. of the Working Conference on Ad-
vanced Visual interfaces. AVI '06. ACM Press, New York.

[19] C. Pribeanu, J. Vanderdonckt, Exploring Design Heuristics
for User Interface Derivation from Task and Domain Mod-
els, Chapter 9, in Proceedings of 4th Int. Conf. on Com-
puter-Aided Design of User Interfaces CADUI'2002,
Kluwe Academics Pub., Dordrecht, 2002.

[20] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L.,
and Lopez, V. UsiXML: a Language Supporting Multi-Path
Development of User Interfaces, Proc. of 9th IFIP Working
Conf. on Engineering for Human-Computer Interaction
jointly with 11th Int. Workshop on Design, Specification,
and Verification of Interact.Sys. EHCI-DSVIS’2004 (Ham-
burg, July 11-13, 2004). LNCS, Vol. 3425, Springer, 2005.

[21] Bodart, F., Hennebert, A., Leheureux, J., and Vander-
donckt, J. 1994. Towards a dynamic strategy for computer-
aided visual placement. In Proceedings of the Workshop on
Advanced Visual interfaces (Bari, Italy, June 01 - 04,
1994). M. F. Costabile, T. Catarci, S. Levialdi, and G. San-
tucci, Eds. AVI '94. ACM Press, New York, NY, 78-87.

[22] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L.
Bouillon, and J. Vanderdonckt, A Unifying Reference
Framework for Multi-Target User Interfaces, Interacting
with comp., Vol. 15, No. 3, June 2003, pp. 289-308.

Weight Items to process

Task
 Type

Operator
Type

8 - Concurrent

4 Interactive Choice

2 Application Sequence

Layers Weight Calculated cost per level

 C1 C2 C3

1 3 8 16 0

2 1 8 54 16

3 2 54 0 54

Weighted average 23.33 17 20.66

68

