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Abstract. We describe a prototype that performs structure-based classification
of molecular structures. The software we present implements a sound and com-
plete reasoning procedure of a formalism that extends logic programming and
builds upon the DLV deductive databases system. We capture a wide range of
chemical classes that are not expressible with OWL-based formalisms such as
cyclic molecules, saturated molecules and alkanes. In terms of performance, a no-
ticeable improvement is observed in comparison with previous approaches. Our
evaluation has discovered subsumptions that are missing from the the manually
curated ChEBI ontology as well as discrepancies with respect to existing subclass
relations. We illustrate thus the potential of an ontology language which is suit-
able for the Life Sciences domain and exhibits an encouraging balance between
expressive power and practical feasibility.

Keywords: Knowledge representation and reasoning, Logic programming and
answer set programming, Cheminformatics.

1 Introduction

The volume of bioinformatics data produced by research laboratories worldwide is in-
creasing at an astonishing rate turning the need to adequately catalogue, represent and
index the vast amounts of Life Sciences data sources into a pressing challenge. Semantic
technologies have achieved significant progress towards the federation of biochemical
information [33, 3, 4] via the definition and use of domain vocabularies with formal
semantics, also known as ontologies. OWL [15], a family of logic-based knowledge
representation (KR) formalisms standardised by W3C, has played a pivotal role in the
advent of Semantic technologies due to its significant ability to reason over ontolo-
gies by means of logical inference. In particular, OWL bio- and chemo-ontologies with
their intuitive hierarchical structure and their formal semantics are widely used for the
modelling of Life Sciences terminologies.

Classification is a core activity in biochemical investigations, as hierarchies come
with a number of compelling benefits. For instance, hierarchically organised knowledge
is more accessible to humans as it is indicated, e.g. by the widespread use of the periodic
table in chemistry. Additionally, organising a large number of different objects into
meaningful groups facilitates the discovery of significant properties pertaining to the
group; these discoveries can then be used to predict features of later detected members
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of the group, such as the high volatility of esters with low molecular weight. As a
consequence, classifying objects on the basis of shared characteristics is a central task
in areas such as biology and chemistry with a long tradition of taxonomy use. Due to the
availability of performant OWL reasoners, life scientists can employ OWL to encode
expert human knowledge and thus drive fast, automatic and repeatable classification
processes that produce high quality hierarchies [32, 5]. Nevertheless, a prerequisite is
that OWL is expressive enough to model the entities that need to be classified as well
as the properties of the superclasses that lie higher up in the hierarchy.

As discussed in our previous work [21], we identify two main restrictions in the
expressive power of OWL which have also been highlighted in the past as hindering
factors for the representation of biological knowledge with OWL [24]. First, due to the
tree-model property of OWL [28] (which accounts for the robust computational proper-
ties of the language) one is not able to describe cyclic structures in OWL with adequate
precision. Second, because of the open-world assumption adopted in OWL (according
to which missing information is treated as not known rather than false) it is difficult to
define classes based on the absence of certain characteristics. These limitations mani-
fest themselves—among others—via the inability to define a broad range of classes in
the chemical domain. For instance, one cannot encode effectively in OWL the class of
compounds that contain a benzene ring or the category of molecules that do not contain
carbon atoms, i.e. inorganic molecules.

These inadequacies obstruct the full automation of the classification process for
chemical ontologies, such as the ChEBI ontology [22]. ChEBI is an open-access dictio-
nary of molecular entities that provides high quality annotation and taxonomical infor-
mation for chemical compounds. The ChEBI ontology fosters interoperability between
researchers by acting as a common reference and supports tasks such as the study of
metabolic networks, identification of disease pathways and pharmaceutical design [14,
10]. However, ChEBI is manually curated by human experts who annotate and deter-
mine the chemical classes of new molecular entries. Currently, ChEBI describes 29,295
fully annotated entities (release 951) and grows at a rate of approximately 3,500 enti-
ties per year (estimate based on previous releases1). Given the size of other publicly
available chemical databases, such as PubChem [30] that contains records for 1.6 mil-
lion molecules and ChemSpider [25] that encompasses more than 26 million unique
molecules, there is clearly a strong potential for ChEBI to expand by speeding up the
curating tasks through automation of chemical classification.

The construction of chemical hierarchies has been the topic of various investiga-
tions capitalising on both logic-based KR [29, 17, 12, 9] and statistical machine learning
(ML) [16, 8] techniques. In KR approaches, molecule and class descriptions are repre-
sented with logical axioms crafted by experts and subsumptions are identified with the
help of automated reasoning algorithms; in ML approaches a set of annotated data is
used to train an algorithm and the algorithm is next employed to classify new entries.
So, KR approaches are based on the explicit axiomatisation of knowledge, whereas ML
algorithms act as a ‘black box’ that assigns to new entries superclasses that are highly
probable to be correct. As a consequence, the taxonomies produced using logic-based
techniques are provably correct (as long as the modelling of the domain knowledge is

1 http://www.ebi.ac.uk/chebi/newsForward.do
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faithful), but the statistically produced hierarchies (although much faster) need to be
evaluated against a curated gold standard. Thus, KR-based and ML-based classification
techniques are not directly comparable. For a more detailed overview, Hastings et al.
[13] provide a thorough analysis of the two approaches.

Here, we focus on logic-based chemical classification. In our previous work [21],
we laid the theoretical foundation of a new sound and complete expressive ontology
language under the name DGLP (Description Graph Logic Programs) that is suitable for
the representation of graph-shaped objects; additionally, we demonstrated how DGLP,
which draws upon logic programming, can be applied to the classification of molecules.
DGLP addressed the expressivity limitations outlined above; however, the performance
of the implementation—although faster than previous approaches—was not satisfactory
(more than 7 minutes were needed to classify 70 molecules under 5 chemical classes
on a standard desktop computer) failing thus to confirm practicability of the formalism.

In the current work, we describe an improved practical framework that relies on the
same formalism but with ameliorated performance. In particular, our contributions can
be summarised as follows:

1. We present a prototype that performs logic-based chemical classification based on
a sound, complete and terminating reasoning algorithm; we model more than 50
chemical classes and we show that the superclasses of 500 molecules are computed
in 40 seconds.

2. We harness the expressive power of logic programming to axiomatise a variety of
chemical classes such as classes based on the containment of functional groups (e.g.
esters) and on the exact cardinality of parts (e.g. dicarboxylic acids), classes de-
pending on the overall atomic constitution (e.g. saturated molecules) and cyclicity-
related classes (e.g. compounds containing a cycle of arbitrary length or alkanes).

3. We exhibit a significant speedup in comparison with previous ontology-based chem-
ical classification implementations.

4. We identify examples of missing and contradictory subsumptions from the man-
ually curated ChEBI ontology that are present and absent, respectively, from the
hierarchy computed by our prototype.

Concerning future benefits, our prototype could form the basis of a Semantic Web
application to assist biocurators of the ChEBI ontology towards the sanitisation and the
enrichment of the existing chemical taxonomy. Similarly, such a tool could contribute
to a more rapid development of the ChEBI ontology and to the efforts of the ChEBI
team to make annotated chemical datasets available to the public. From a modelling
point of view, our approach could stimulate the adoption of a different and expressive
reasoning paradigm based on logic programming for which state-of-the-art and highly
optimised reasoners are available; it could thus pave the way for the representation of a
broader spectrum of Life Sciences and biomedical knowledge.

2 Modelling Chemicals with Logic Programming

The reasoning task carried out by our methodology is the identification of chemical
classes for molecules, e.g. the class of inorganic molecules for water or cyclic molecules
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for benzene. In this section we provide a high-level description of the knowledge base
(KB) we built for the purposes of the said structure-based chemical classification. By
abuse of terminology, we use the word ‘classification’ to refer to the detection of sub-
sumptions between molecules and chemical classes rather than to the computation of
the partial order of the set of chemical classes and molecules w.r.t. the subclass relation.
The KB consists of logic programming (LP) rules that formally describe molecular
structures and chemical classes; this representation can subsequently be used to deter-
mine the subsumers of each molecule in terms of chemical classes. Since our main focus
is to illustrate the transformation of chemical graphs and chemical class definitions into
LP rules, we omit the technical details and describe our setting by means of a running
example. For a formal definition of syntax and semantics as well as decidability proofs,
we refer the interested reader to the relevant articles [21, 6].

2.1 Molecular Structures

Next, we describe how a chemical graph can be converted into an LP rule that encodes
its structure. We use as an example the molecule of ascorbic acid, a naturally occurring
organic compound commonly known as vitamin C. The chemical graph of ascorbic acid
is depicted in the top right corner of Figure 1.

Conceptually, the structure of ascorbic acid can be abstracted with the help of a di-
rected labeled graph such as the one that appears in the bottom right of Figure 1 and
which in our framework is called description graph (DG) [21]. In order to simplify the
depiction of the ascorbic acid DG in Figure 1 a legend is used for the edge labels; all
arrowless edges are assumed to be bidirectional. The description graph of a molecule
is a labeled graph whose nodes correspond to the atoms of the molecule (nodes 1–13
for ascorbic acid) plus an extra node for the molecule itself (node 0) and whose edges
correspond to the bonds of the molecule (e.g. (1,7)) plus some additional edges that
connect the molecule node with each one of the atom nodes (e.g. (0,1)); additionally,
the atom nodes are labeled with the respective chemical elements (e.g. o for node 1)
and the bond edges with the corresponding bond order (e.g. single for (1,7)); finally, the
molecule node is labeled with molecule and the edges that connect the molecule node
with each of the atom nodes are labeled with hasAtom. In our setting, we follow the im-
plicit hydrogen assumption according to which hydrogen atoms are usually suppressed
(excluding cases where stereochemical information is provided for the formed bond as
in node 13). Finally, we point out that both the nodes and the edges can have multiple
labels allowing us to also encode molecular properties such as charge values for atoms.

The description graph of ascorbic acid can next be converted into an LP rule that
faithful represents its molecular structure (in fact we need a separate rule for each con-
junct in the head but we use just one rule here to simplify the presentation). The LP rule
that the DG of ascorbic acid is translated into is as follows (for the sake of brevity only
one direction of the bonds appears in the rest of the text and we shorten an expression
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Fig. 1. Molfile (left), chemical graph (top right) and description graph (bottom right) encoding
the molecular structure of ascorbic acid.

of the form ∧C1 . . . ∧ Cn with ∧n
i=1Ci):

ascorbicAcid(x)→∧13
i=1 hasAtom(x, fi(x)) ∧molecule(x) ∧6

i=1 o(fi(x)) ∧12
i=7 c(fi(x))∧

h(f13(x)) ∧ single(f8(x), f3(x)) ∧ single(f9(x), f4(x))
∧i=1,9,11,13 single(f10(x), fi(x)) ∧i=5,11 single(f12(x), fi(x))
∧i=1,8 single(f7(x), fi(x)) ∧ single(f11(x), f6(x))∧
double(f2(x), f7(x)) ∧ double(f8(x), f9(x))

The rule above is a typical first-order implication with a single atomic formula in the
body and a conjunction of atomic formulae in the head. Informally, the rule ensures
that every time that an ascorbic acid molecule is encountered in the KB, its structure is
unfolded according to its specified DG. Thus, triggering of the rule implies that (i) new
terms that correspond to the DG’s nodes are generated (excluding node 0), e.g. f1(x)
represents atom node 1 (ii) each new term is typed according to the label of the relevant
node with the help of a unary atomic formula (e.g. o(f1(x))) and (iii) each pair of terms
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with corresponding nodes connected in the DG is assigned the respective label with the
help of a binary atomic formula (e.g. single(f1(x), f7(x))). In order to ensure disjointness
of the several molecular structures on the interpretation level, distinct function symbols
are used in the LP rule of each molecule.

2.2 Background Knowledge and Chemical Classes

Before presenting the modelling of various chemical classes, we demonstrate how LP
rules can encode background chemical knowledge, e.g. the fact that single and double
bonds are kinds of bonds or that atoms with positive or negative charge are charged; LP
rules may also denote a particular class of atoms based on their elements, e.g. atoms
that are hydrogens or carbons:

single(x, y)→bond(x, y) double(x, y)→bond(x, y)
negative(x)→charged(x) positive(x)→charged(x)

h(x)→horc(x) c(x)→horc(x)

For our experiments, we represented 51 chemical classes using LP rules; we based our
chemical modelling on the textual definitions found in the ChEBI ontology [22]. We
covered a diverse variety of classes that can roughly be categorised into four groups.
Please note that there are cases in which more than one LP rule is needed to encode a
class definition. Due to space restrictions, we show in full detail only a sample of the
rules; the complete logic program is available online.2

Existence of subcomponents The great majority of the modelled chemical classes is
defined via containment of atoms, functional groups or other atom arrangements. Ex-
amples of this type include carbon molecular entities, halogens, molecules that contain
a benzene ring, carboxylic acids, carboxylic esters, polyatomic entities, amines, alde-
hydes and ketones.

molecule(x) ∧ hasAtom(x, y) ∧ c(y)→carbonMolEntity(x)
molecule(x) ∧ hasAtom(x, y1) ∧ hasAtom(x, y2) ∧ y1 6= y2 →polyatomicEntity(x)

∧3
i=1hasAtom(x, yi) ∧ o(y1) ∧3

i=2 bond(y1, yi) ∧ y2 6= y3 →middleOxygen(y1)

molecule(x) ∧4
i=1 hasAtom(x, yi) ∧ c(y1) ∧ o(y2) ∧ o(y3) ∧

horc(y4) ∧ double(y1, y2) ∧ single(y1, y3) ∧ single(y1, y4) ∧
not middleOxygen(y3) ∧ not charged(y3)→carboxylicAcid(x)

molecule(x) ∧5
i=1 hasAtom(x, yi) ∧i=1,4 c(yi) ∧i=2,3 o(yi) ∧

horc(y5) ∧ double(y1, y2) ∧i=3,5 single(y1, yi) ∧ single(y3, y4)→carboxylicEster(x)

We show above the rules for the classes of carbon molecular entities, polyatomic enti-
ties, carboxylic acids and esters. We define as carbon molecular entities the molecules

2 http://www.cs.ox.ac.uk/isg/people/despoina.magka/tools/
chemRules
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that contain carbon; polyatomic entities are the entities that contain at least two different
atoms. Carboxylic acids are defined as molecules containing at least one carboxy group
(a functional group with formula C(=O)OH) attached to a carbon or hydrogen; due to
the implicit hydrogens assumption we are not able to distinguish between an oxygen and
a hydroxy group and, so, we need to specify that the oxygen of the hydroxy group is not
charged (not charged(y3)) and participates to only one bond (not middleOxygen(y3)).
Similarly, carboxylic esters contain a carbonyl group connected to an oxygen ((C=O)O)
which is further attached to two atoms that are carbon or hydrogen.

Exact cardinality of parts These chemical classes comprise molecules with an exact
number of atoms or of functional groups. Examples include molecules that contain
exactly two carbons, molecules that contain only one atom and dicarboxylic acids, that
is molecules with exactly two carboxy groups. We show the definition of molecules
with exactly two carbons.

molecule(x) ∧2
i=1 hasAtom(x, yi) ∧ c(yi) ∧ y1 6= y2 →atLeast2Carbs(x)

molecule(x) ∧3
i=1 hasAtom(x, yi) ∧ c(yi) ∧3

i=2 y1 6= yi ∧ y2 6= y3 →atLeast3Carbs(x)
atLeast2Carbs(x) ∧ not atLeast3Carbs(x)→exactly2Carbs(x)

Exclusive composition These are classes of molecules such that each atom (or bond)
they contain satisfies a particular property. E.g. inorganic molecules consist exclusively
of non-carbon atoms,3 hydrocarbons only contain hydrogens and carbons and saturated
compounds are defined as the compounds whose carbon to carbon bonds are all single.
Hydrocarbons are defined as follows:

molecule(x) ∧ hasAtom(x, y) ∧ not c(y) ∧ not h(y)→notHydroCarbon(x)
carbonMolEntity(x) ∧ not notHydroCarbon(x)→hydroCarbon(x)

Cyclicity-related classes These chemical classes include the definition of molecules
containing a ring of any length as well as other definitions that depend on the cyclicity
of molecules (for instance alkanes). Assuming the (somewhat technical) definition of
cyclic and of saturated molecules, we provide the definition of alkanes.

molecule(x) ∧ hasAtom(x, y) ∧ loopAtLeast3Atom(y)→cyclic(x)
saturated(x) ∧ hydroCarbon(x) ∧ not cyclic(x)→alkane(x)

2.3 Determining Subclass Relations

Finally, we demonstrate how meaningful subsumptions can be derived using a KB con-
taining the rules outlined in the previous two sections. In order to determine the super-
classes of a certain molecule, we extend the KB with a suitable fact (i.e., a variable-free

3 Inspite of the fact that there are many compounds with carbons considered inorganic, we
aligned our encoding to the ChEBI definition (CHEBI:24835) according to which inorganic
molecular entities contain no carbons.
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atomic formula) and we examine the model that satisfies the KB under the stable model
semantics. An exact definition of the stable model semantics is provided by Gelfond
and Lifschitz [11]. Intuitively, the stable model of a KB is the minimal set of facts that
are derived by exhaustively applying the existing rules under a particular rule order; a
rule is applied if its positive body can be matched to the so far derived facts and no atom
of the negative body is in the already produced set of facts for the said matching.

Table 1. Stable model of the KB with the input fact ascorbicAcid(a) and the rules of Section 2.1
and 2.2; fi(a) is abbreviated with af

i for 1 ≤ i ≤ 13.

Input fact: ascorbicAcid(a)

Stable model: ascorbicAcid(a), hasAtom(a, af
i ) for 1 ≤ i ≤ 13, o(af

i ) for 1 ≤ i ≤ 6,

c(af
i ) for 7 ≤ i ≤ 12, h(af

13), single(af
8, a

f
3), single(af

9, a
f
4), single(af

12, a
f
i ) for i ∈ {5, 11},

single(af
10, a

f
i ) for i ∈ {1, 9, 11, 13}, single(af

7, a
f
i ) for i ∈ {1, 8}, single(af

11, a
f
6),

double(af
2, a

f
7), double(af

8, a
f
9), bond(af

8, a
f
3), bond(af

9, a
f
4), bond(af

12, a
f
i ) for i ∈ {5, 11},

bond(af
10, a

f
i ) for i ∈ {1, 9, 11, 13}, bond(af

7, a
f
i ) for i ∈ {1, 8}, bond(af

11, a
f
6),

bond(af
2, a

f
7), bond(af

8, a
f
9), horc(af

i ) for 7 ≤ i ≤ 13, molecule(a), carbonMolEntity(a),
polyatomicEntity(a), middleOxygen(af

1), carboxylicEster(a), atLeast2Carbons(a),
atLeast3Carbons(a), notHydroCarbon(a), cyclic(a)

The initially added fact is the molecule name predicate instantiated with a fresh
constant so that the rule that encodes the DG of that molecule is triggered. For the case
of ascorbic acid, if we append the fact ascorbicAcid(a) to the previously described KB,
we obtain the stable model that appears in Table 1. From the highlighted atoms we can
infer the superclasses of ascorbic acid, that is we deduce that ascorbic acid is—among
others—a polyatomic, cyclic molecular entity that contains carbon and a carboxylic
ester. If there is no relevant atom for a chemical class in the stable model, then we
conclude that the said class is not a valid subsumer, e.g. since carboxylicAcid(a) is not
found in the stable model, carboxylic acid is not a superclass of ascorbic acid.

2.4 Decidability check
The KB discussed above contains rules with function symbols in the head, such as the
rule used to encode the molecular structure of ascorbic acid. These rules may incur
non-termination during the computation of the stable model due to the creation of new
terms that might be infinitely many. In order to ensure termination of our reasoning pro-
cess and thus decidability of the employed formalism, we perform a decidability check
on the constructed KB. Roughly, the decidability check (also known and as model-
summarising acyclicity [6]) involves transforming the rules of the KB and inspecting
the stable model of the transformed KB. If the KB passes the decidability check, then
termination is guaranteed. Technical details of the aforementioned condition are out of
the scope of this text and can be found in the relevant sources [6].

3 Prototype Implementation

The current section provides an overview of LoPStER,4 the prototype we developed for
structure-based chemical classification. The implementation is heavily based on DLV

4 Logic Programming for Structured Entities Reasoner
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system, a powerful and efficient deductive databases and logic programming engine
[19]. DLV constitutes the automated reasoning component used by LoPStER for stable
model computation of a set of LP rules. Figure 2 depicts the basic processing steps as
well as the different files that are processed and produced by LoPStER. LoPStER is
implemented in Java and is available online.5 Next, we describe in more detail the
several stages of execution.

  

1.CDK-aided 
parsing

DLV system

DLV 
programs

Chemical 
hierarchyLoPStER

Molfiles

LP classification
 rules

2.Compilation of the KB

4.Invoke DLV for model computation

3.Invoke DLV for decidability check

Stable 
models

5.Stable model storage

6.Subsumptions 
extraction

Fig. 2. Architecture of DLVStructuredEntities

1. CDK-aided parsing. LoPStER parses the molfiles [7] of the molecules to be classi-
fied using the Chemistry Development Kit Java library [27]. The molfile is a widely
used chemical file format that describes molecular structures with a connection ta-
ble; e.g., the molfile of ascorbic acid appears in the left of Fig. 1. For each molecule,
a description graph (e.g. Fig. 1 bottom right) representation is generated from its
molfile according to a transformation as the one described for ascorbic acid.

2. Compilation of the KB. For each molecule the description graph representation
is used to produce a set of LP rules that encode the structure of the molecule, fol-
lowing the translation that was discussed in Section 2.1. These rules along with the
LP classification rules (Section 2.2) and the facts necessary to determine subclass
relations (as described in Section 2.3) are combined to produce DLV programs (i.e.
sets of LP rules) that are stored as plain text files on disk. In particular two kinds of
DLV programs are created for each molecule, the program needed to perform the

5 http://www.cs.ox.ac.uk/isg/people/despoina.magka/tools/
LoPStER.zip
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decidability check as described in Section 2.4 and the program needed to compute
subclass relations between the molecules and the chemical classes.

3. Invoke DLV for decidability check. During this step, the model of the program,
which was produced in the previous step for acyclicity testing, is computed. If
the check is successful, then execution proceeds to the next stage; otherwise, the
program is exited with a suitable output message.

4. Invoke DLV for model computation. This is the stage where DLV is invoked to
compute the stable model of the KB. Due to the check of the previous step, the
computation is guaranteed to terminate.

5. Stable model storage. At this point, the stable model computed by DLV is stored
in a file on disk to enable subsequent discovery of the subclass relations.

6. Subsumptions extraction. This is the final phase where the stable model file is
parsed in order to detect the superclasses of each molecule. All the subsumee-
subsumer pairs are stored in a separate spreadsheet file on disk.

4 Empirical Evaluation

In order to assess the applicability of our implementation, we measured the time re-
quired by LoPStER to perform classification of molecules. To obtain test data we ex-
tracted molfile descriptions of 500 molecules from the ChEBI ontology. The repre-
sented compounds were of diverse size, varying from a few atoms to less or equal than
59 atoms. Next, we investigated the scalability of our prototype by altering two differ-
ent parameters of the knowledge base, namely the number of represented molecules and
the type of modelled chemical classes. Initially, we constructed 10 DLV programs each
of which contained rules encoding 50 · i different compounds, where 1 ≤ i ≤ 10, and
rules defining the chemical classes previously described excluding the cyclicity-related
classes (48 classes in total). Next, we repeated the same construction but this time in-
cluding the rules for the cyclicity-related classes (51 classes). In the rest of the section,
we refer to the first setting as ‘no cyclic’ and to the second as ‘with cyclic’.

Table 2. Experimental results

No molecules No of rules Time no cyclic (sec) Time with cyclic (sec)

50 3614 3.21 4.69
100 6832 3.11 5.75
150 18072 8.06 19.98
200 23746 10.27 25.08
250 28502 12.41 29.87
300 31892 14.34 31.63
350 35046 14.44 34.05
400 38095 15.97 35.99
450 41536 17.36 37.97
500 43629 19.14 39.66

Additionally and in order to optimise the performance, we explored how classifi-
cation times fluctuate depending on the size of DLV programs. In particular, we par-
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titioned the DLV programs into modules, we measured classification times for each
module separately and we summed up the times. Each module contains the facts and
the rules describing a subset of the molecules represented in the initial DLV program;
the rules defining chemical classes are appended to each one of the modules. Thus, the
size of each module depends on the number of encoded molecules. We tested modules
of size 5, 10, 20, 25 and 50 as well as DLV programs without any partitioning for both
the ‘no cyclic’ mode and the ‘with cyclic’ mode. Modifying the size of the module had a
clear impact on the measured times and performing classification with the modularised
knowledge base was always quicker than with the unpartitioned one; we observed the
shortest execution times for module size 50 when testing in ‘no cyclic’ mode and for
module size 25 when testing in ‘with cyclic’ mode.

Table 2 summarises the classification times for the previously described KBs. The
experiments were performed on a desktop computer with 3.7 GB of RAM and Intel
CoreTM 2 Quad Processors running at 2.5 GHz and 64 bit Linux. The first column
displays the number of molecules, the second column the number of LP rules contained
in the corresponding DLV program and the third (fourth) column the time needed to
perform classification in ‘no cyclic’ (‘with cyclic’) mode. We only display the number
of LP rules for the ‘no cyclic’ mode because there are only six rules more in the DLV
programs with cyclicity-related definitions. The times that appear in the third and fourth
column of Table 2 were measured for module size 50 and 25 respectively. All the DLV
programs that were tested passed the decidability check. The classification experiment
for each knowledge base was repeated three times and the results were averaged over
the three runs; also, the durations of Table 2 are comprehensive, that is they count the
time elapsed before the molfiles parsing and after the subsumptions extraction. Figure 3
depicts the plots of the time intervals appearing in Table 2 both with regard to the
number of molecules and the number of rules contained in the respective DLV program.

100 200 300 400 500
0

10

20

30

40
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Fig. 3. Curves of classification times
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5 Discussion and Related Work

The performance results of Table 2 are encouraging for the practical feasibility of our
approach: the time measurements for 500 molecules suggest that the entire set of molec-
ular entities that are currently represented by the ChEBI ontology (29,295 3-star entities
as of release 95) could be classified in less than 40 minutes for the suite of 51 modelled
chemical classes. One can observe that the rules encoding cyclicity-related classes intro-
duce a significant overhead for the classification times. In fact, it is the class that recog-
nises molecules with cycles of arbitrary length that incurs the performance penalty. The
rules that encode the class of cyclic molecules need to identify patterns that are ex-
tremely frequent in molecular graphs; as a consequence, the amount of computational
resources that is needed to detect ring-containing molecules is much higher. However,
since our class definition for cyclic molecules detects compounds with cycles of vari-
able length which is a significant property for the construction of chemical hierarchies,
we consider this overhead acceptable.

Concerning expressive power, the current approach allows for the representation of
strictly more chemical classes in comparison with other logic-based applications for
chemical classification. Villanueva-Rosales and Dumontier [29] were the first to de-
scribe an OWL DL ontology of functional groups for the classification of chemical
compounds; in their work, they point out the inherent inability of OWL to represent
cycles and how this hinders the use of OWL in logic-based chemical classification. As
a remedy, Hastings et al. [12] employ an extension of OWL [23] for the representa-
tion of non-tree-like structures and, thus, for the classification of molecular structures.
However, the used formalism only allows for the identification of cycles of fixed length
and with alternating single and double bonds. In the current approach we are able to
recognise molecules containing cycles of both arbitrary and fixed length and without
requiring a particular configuration of bonds.

Moreover, in both approaches outlined above the adopted open world assumption of
OWL prevents one from defining structures based on the absence of certain character-
istics. In our approach we operate under the closed world assumption which permits for
the definition of a broad range of chemical classes that were not expressible before such
as the class of inorganic, hydrocarbon or saturated compounds. Finally and in compar-
ison with our previous work [21], we take full advantage of the suggested formalism
by specifying a much wider range of chemical classes and we do not require from the
modeller a precedence relation between the represented structures.

In terms of performance, the classification results appear more promising than pre-
vious and related work. Hastings et al. [12] report that a total of 4 hours was required
to determine the superclasses of 140 molecules, whereas LoPStER identifies the chem-
ical classes of 500 molecules in less than 40 seconds. LoPStER is quicker in compar-
ison with our previous work too [21] where 450 seconds were needed to classify 70
molecules (80 times faster). Please note that both cases discussed above considered a
subset of the chemical classes used here. We identify the following two main factors for
the significant change in speed. First, DLV is a more suitable reasoner for our setting
due to its bottom-up computation strategy as well as its active maintenance team and
frequent releases. Second, we employ a more efficient condition (model-summarising
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Fig. 4. Superclasses of ascorbic acid for the ChEBI OWL ontology release 95

acyclicity [6] instead of semantic acyclicity [21]) in order to obtain termination guaran-
tees which allows for a more prompt decidability check.

Furthermore, while conducting the experiments we discovered a number of missing
and inconsistent subsumptions from the manually curated ChEBI ontology; due to space
restrictions we only mention a few of them. As one can infer from the chemical graph
of ascorbic acid appearing in the top right of Figure 1, ascorbic acid is a carboxylic es-
ter as well as a polyatomic cyclic entity. Inspite of the fact that these superclasses were
exposed by our classification methodology, we were not able to identify them in the
ChEBI hierarchy. Figure 4 shows the ancestry of ascorbic acid (CHEBI:29073) in the
OWL version of the ChEBI ontology (due to space limitations we are not able to demon-
strate subsumers above organooxygen compound); none of the concepts cyclic entity
(CHEBI:33595), polyatomic entity (CHEBI:36357) or carboxylic ester (CHEBI:33308)
is encountered among the superclasses of ascorbic acid (neither among the superclasses
of organooxygen compound). Moreover, ascorbic acid is asserted as a carboxylic acid
which is not the case as it can be deduced by the lack of a carboxy group in the chem-
ical graph of ascorbic acid. We interpret the revealing of these modelling errors as an
indication of the practical relevance of our contribution.

6 Conclusion and Future Research

We presented an implementation that performs logic-based classification of chemicals
and builds upon a sound and complete reasoning procedure for an extension of logic
programming; our prototype relies on the DLV system and is considerably quicker than
previous approaches. For our evaluation, we represented a wide variety of chemical
classes that are not expressible with OWL-based formalisms; additionally, our software
revealed subclass relations that are missing from the manually curated ChEBI ontology
as well as some erroneous ones. We demonstrated thus the capabilities of a logic pro-
gramming ontology language which for the purposes of structure-based classification
displays a favourable trade-off between expressive power and performance.

For the future, we plan to design a SMILES-based [31] surface syntax such that
cheminformaticians are able to define chemical classes more intuitively and without the
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need to script logic programming rules. We will also seek to extend our framework to
accommodate subsumption between chemical classes so as to generate the complete
chemical hierarchy as well as representation of numerical values [20] that would allow
for more expressive modelling, such as classes depending on molecular weight. More-
over, we would be interested in exploring the integration of our prototype with ontology
editors [2], Life Sciences platforms [26] and chemical structure visualisation tools [1,
18] as well as defining a mapping of the introduced formalism to RDF.
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